The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286142 Compound filter: a(n) = T(A257993(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function. 9
 1, 5, 2, 12, 2, 31, 2, 38, 7, 23, 2, 94, 2, 23, 16, 138, 2, 94, 2, 80, 16, 23, 2, 328, 7, 23, 29, 80, 2, 532, 2, 530, 16, 23, 16, 706, 2, 23, 16, 302, 2, 499, 2, 80, 67, 23, 2, 1228, 7, 80, 16, 80, 2, 328, 16, 302, 16, 23, 2, 1957, 2, 23, 67, 2082, 16, 499, 2, 80, 16, 467, 2, 2704, 2, 23, 67, 80, 16, 499, 2, 1178, 121, 23, 2, 1894, 16, 23, 16, 302, 2, 1957, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 MathWorld, Pairing Function FORMULA a(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n)). MATHEMATICA Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 - Boole[n == 1] & @@ {Module[{i = 1}, While[! CoprimeQ[Prime@ i, n], i++]; i], Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]}, {n, 92}] (* Michael De Vlieger, May 04 2017 *) PROG (PARI) A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011 A257993(n) = { for(i=1, n, if(n%prime(i), return(i))); } A286142(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n)); for(n=1, 10000, write("b286142.txt", n, " ", A286142(n))); (Scheme) (define (A286142 n) (* (/ 1 2) (+ (expt (+ (A257993 n) (A046523 n)) 2) (- (A257993 n)) (- (* 3 (A046523 n))) 2))) (Python) from sympy import factorint, prime, primepi, gcd def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def P(n):     f = factorint(n)     return sorted([f[i] for i in f]) def a046523(n):     x=1     while True:         if P(n) == P(x): return x         else: x+=1 def a053669(n):     x=1     while True:         if gcd(prime(x), n) == 1: return prime(x)         else: x+=1 def a257993(n): return primepi(a053669(n)) def a(n): return T(a257993(n), a046523(n)) # Indranil Ghosh, May 05 2017 CROSSREFS Cf. A000027, A046523, A257993, A286144, A286160, A286161, A286162, A286163, A286164. Differs from A286143 for the first time at n=24, where a(24) = 328, while A286143(24) = 355. Sequence in context: A249369 A065268 A275509 * A286143 A130298 A128116 Adjacent sequences:  A286139 A286140 A286141 * A286143 A286144 A286145 KEYWORD nonn AUTHOR Antti Karttunen, May 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 15:30 EDT 2021. Contains 345364 sequences. (Running on oeis4.)