The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249369 Rectangular array by descending antidiagonals:  t(n,k) is the position of prime(n+1)*k^2 when the numbers prime(j+1)*h^2 are jointly ordered, for j>=1 and h>=1. 3
 1, 5, 2, 11, 9, 3, 21, 19, 12, 4, 31, 34, 26, 18, 6, 43, 50, 45, 39, 22, 7, 55, 70, 67, 68, 48, 28, 8, 74, 91, 93, 101, 79, 59, 32, 10, 89, 116, 122, 138, 117, 100, 64, 37, 13, 109, 142, 156, 181, 164, 148, 110, 78, 47, 14, 128, 172, 189, 233, 211, 205, 165 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, let S be the set of positive integer multiples of the square roots of the odd primes.  Then t(n,k) is the position of k*sqrt(prime(n+1)) in the ordered union of S. Every positive integer occurs exactly once in the array {t(n,k)}. LINKS EXAMPLE Northwest corner: 1   5    11   21   31    43    55 2   9    19   34   50    70    91 3   12   26   45   67    93    122 4   18   39   68   101   138   181 6   22   48   79   117   164   211 The numbers 3*k^2 are (3,12,27,48,75,...); the numbers 5*k^2 are (5,20,45,80,125,...); the numbers 7*k^2 are (7,28,63,112,175,...); the joint ranking of all such numbers is (3,5,7,11,12,13,...) = A249370, in which numbers of the form 3*k^2 occupy positions 1,5,11,21,... which is row 1 of the present array.  Similarly, the numbers 5*k^2 occupy positions 2,9,19,34,... MATHEMATICA z = 20000; e[h_] := e[h] = Select[Range[2000], Prime[h]*(#^2) < z &]; t = Table[Prime[n]*e[n]^2, {n, 2, 2000}]; s = Sort[Flatten[t]]; u[n_, k_] := Position[s, Prime[n]*k^2]; TableForm[Table[u[n, k], {n, 2, 15}, {k, 1, 15}]]   (* A249369 array *) Table[u[k, n - k + 1], {n, 15}, {k, 1, n}] // Flatten  (* A249369 sequence *) CROSSREFS Cf. A249368, A249370. Sequence in context: A176624 A131784 A302773 * A065268 A275509 A286142 Adjacent sequences:  A249366 A249367 A249368 * A249370 A249371 A249372 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Oct 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 00:28 EDT 2021. Contains 346265 sequences. (Running on oeis4.)