login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249367
Numbers of the form 2n^2 or 3n^2.
1
0, 2, 3, 8, 12, 18, 27, 32, 48, 50, 72, 75, 98, 108, 128, 147, 162, 192, 200, 242, 243, 288, 300, 338, 363, 392, 432, 450, 507, 512, 578, 588, 648, 675, 722, 768, 800, 867, 882, 968, 972, 1058, 1083, 1152, 1200, 1250, 1323, 1352, 1452, 1458, 1568, 1587, 1682
OFFSET
1,2
COMMENTS
Union of 2*A000290 = A001105 and 3*A000290 = A033428.
Essentially a duplicate of A249096.
FORMULA
{2, 3} * A000290 = A001105 U A033428.
MAPLE
N:= 10000: # to get all terms <= N
{seq(2*i^2, i=0..floor(sqrt(N/2)))} union {seq(3*i^2, i=0..floor(sqrt(N/3)))};
# if using Maple 11 or earlier, uncomment the following line:
# sort(convert(%, list));
# Robert Israel, Oct 27 2014
PROG
(PARI) for(n=0, 5000, if(issquare(n/3)||issquare(n/2), print1(n, ", "))) \\ Derek Orr, Oct 26 2014
CROSSREFS
A249096 is essentially the same sequence.
Sequence in context: A290153 A266629 A249096 * A257999 A350440 A115449
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Oct 26 2014
STATUS
approved