login
A249096
{2*h^2, h >=1} union {3*k^2, k >=1}, in increasing order.
4
2, 3, 8, 12, 18, 27, 32, 48, 50, 72, 75, 98, 108, 128, 147, 162, 192, 200, 242, 243, 288, 300, 338, 363, 392, 432, 450, 507, 512, 578, 588, 648, 675, 722, 768, 800, 867, 882, 968, 972, 1058, 1083, 1152, 1200, 1250, 1323, 1352, 1452, 1458, 1568, 1587, 1682
OFFSET
1,1
COMMENTS
Let S = {2*h^2, h >=1} and T = {3*k^2, k >=1}. Then S and T are disjoint. The position of 2*n^2 in (S union T) is A184808(n), and the position of 3*n^2 is A184809(n).
LINKS
EXAMPLE
{2*h^2, h >=1} = {2, 8, 18, 32, 50, 72, 98, 128, 162, 200, ...};
{3*k^2, k >=1} = {3, 12, 27, 48, 75, 108, 147, 192, 243, ...};
so the union is {2, 3, 8, 12, 18, 27, 32, 48, 50, 72, 75, ...}
MATHEMATICA
z = 120; s = Table[2 h^2, {h, 1, z}]; t = Table[3 k^2, {k, 1, z}]; v = Sort[Union[s, t]]
CROSSREFS
A249367 is essentially the same sequence.
Sequence in context: A002958 A290153 A266629 * A249367 A257999 A350440
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 20 2014
STATUS
approved