OFFSET
1,2
COMMENTS
Equivalently, let S be the set of positive integer multiples of the square roots of the primes. Then t(n,k) is the position of k*sqrt(prime(n)) in the ordered union of S.
Every positive integer occurs exactly once in the array {t(n,k)}.
EXAMPLE
Northwest corner:
1 5 10 18 26 35 45
2 7 14 25 37 50 63
3 12 23 40 57 79 102
4 15 31 52 76 104 135
6 22 46 77 112 152 197
The numbers prime(1)*k^2 are (2,8,18,32,50,...);
the numbers prime(2)*k^2 are (3,12,27,48,75,...);
the numbers prime(3)*k^2 are (5,20,45,80,125,...);
the joint ranking of all such numbers is (2,3,5,7,8,...) = A229125, in which numbers of the form 2*k^2 occupy positions 1,5,10,17,... which is row 1 of the present array. Similarly, the numbers 3*k^2 occupy positions 2,7,14,20,...
MATHEMATICA
z = 20000; e[h_] := e[h] = Select[Range[2000], Prime[h]*(#^2) < z &];
t = Table[Prime[n]*e[n]^2, {n, 1, 2000}]; s = Sort[Flatten[t]];
u[n_, k_] := Position[s, Prime[n]*k^2];
TableForm[Table[u[n, k], {n, 1, 15}, {k, 1, 15}]] (* A249368 array *)
Table[u[k, n - k + 1], {n, 15}, {k, 1, n}] // Flatten (* A249368 sequence *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Oct 26 2014
STATUS
approved