login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055682
a(n) = floor(n*sqrt(n)) - sigma(n), where sigma(n) is the sum of the divisors of n (A000203).
4
0, -1, 1, 1, 5, 2, 10, 7, 14, 13, 24, 13, 32, 28, 34, 33, 52, 37, 62, 47, 64, 67, 86, 57, 94, 90, 100, 92, 126, 92, 140, 118, 141, 144, 159, 125, 187, 174, 187, 162, 220, 176, 237, 207, 223, 239, 274, 208, 286, 260, 292, 276, 331, 276, 335, 299
OFFSET
1,5
COMMENTS
Always > 0 for n > 2.
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 77, section III.1.1.b.
LINKS
C. C. Lindner, Problem E1888, Amer. Math. Monthly, 73 (1966), 538; solution by A. Bager and S. Russ, op. cit. 74 (1967), 1143.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 6.
MATHEMATICA
a[n_] := Floor[n*Sqrt[n]] - DivisorSigma[1, n]; Array[a, 100] (* Amiram Eldar, Apr 25 2024 *)
PROG
(PARI) a(n)=sqrtint(n^3)-sigma(n) \\ Charles R Greathouse IV, Feb 14 2013
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 29 2000
STATUS
approved