The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057641 a(n) = floor(H(n) + exp(H(n))*log(H(n))) - sigma(n), where H(n) = Sum_{k=1..n} 1/k and sigma(n) (A000203) is the sum of the divisors of n. 22
 0, 0, 1, 0, 4, 0, 7, 2, 7, 5, 13, 0, 17, 9, 12, 8, 23, 5, 27, 8, 21, 20, 34, 1, 33, 25, 30, 17, 46, 7, 50, 22, 40, 37, 46, 6, 62, 43, 50, 19, 70, 19, 74, 37, 46, 55, 82, 9, 79, 46, 70, 47, 95, 32, 83, 38, 81, 74, 107, 2, 112, 81, 76, 56, 102, 45, 125, 70, 103, 58, 133, 14, 138, 101 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Theorem (Lagarias): a(n) is nonnegative for all n if and only if the Riemann Hypothesis is true. Up to rank n=10^4, zeros occur only at n=1,2,4,6 and 12; ones occur at n=3 and n=24. The first occurrence of k = 0,1,2,3,... is at n = 1,3,8,-1,5,10,36,7,16,14,-1,-1,15,11,72,... where -1 means that k does not occur among the first 10^4 terms. - Robert G. Wilson v, Dec 06 2010, reformulated by M. F. Hasler, Sep 09 2011 Looking at the graph of this sequence, it appears that there is a slowly growing lower bound. It is even more apparent when larger ranges of points are computed. Numbers A176679(n+2) and A222761(n) give the (x,y) coordinates of the n-th point. - T. D. Noe, Mar 28 2013 REFERENCES G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213. LINKS Peter Luschny, Table of n, a(n) for n = 1..20000 (first 10000 terms from T. D. Noe) Masazumi Honda and Takuya Yoda, String theory, N = 4 SYM and Riemann hypothesis, arXiv:2203.17091 [hep-th], 2022. J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543. S. Nazardonyavi and S. Yakubovich, Delicacy of the Riemann hypothesis and certain subsequences of superabundant numbers, arXiv preprint arXiv:1306.3434 [math.NT], 2013. FORMULA a(n) = A057640(n) - A000203(n). - Omar E. Pol, Oct 25 2019 MATHEMATICA f[n_] := Block[{h = HarmonicNumber@n}, Floor[h + Exp@h*Log@h] - DivisorSigma[1, n]]; Array[f, 74] (* Robert G. Wilson v, Dec 06 2010 *) PROG (PARI) a(n)={my(H=sum(k=1, n, 1/k)); floor(exp(H)*log(H)+H) - sigma(n)} list_A057641(Nmax, H=0, S=1)=for(n=S, Nmax, H+=1/n; print1(floor(exp(H)*log(H)+H) - sigma(n), ", ")) \\ M. F. Hasler, Sep 09 2011 CROSSREFS Cf. A057640, A000203, A076633, A067698, A079526, A058209. Sequence in context: A342360 A251967 A330725 * A352886 A336029 A272876 Adjacent sequences: A057638 A057639 A057640 * A057642 A057643 A057644 KEYWORD nonn,nice,easy AUTHOR N. J. A. Sloane, Oct 12 2000 EXTENSIONS Five more terms from Robert G. Wilson v, Dec 06 2010 I deleted some unproved assertions by Robert G. Wilson v about the presence of 0's, 1's, ... in this sequence. - N. J. A. Sloane, Dec 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 29 16:58 EST 2024. Contains 370426 sequences. (Running on oeis4.)