login
A057643
Least common multiple of all (k+1)'s, where the k's are the positive divisors of n.
11
2, 6, 4, 30, 6, 84, 8, 90, 20, 66, 12, 5460, 14, 120, 48, 1530, 18, 7980, 20, 2310, 88, 276, 24, 81900, 78, 378, 140, 3480, 30, 114576, 32, 16830, 204, 630, 72, 3838380, 38, 780, 280, 284130, 42, 397320, 44, 4140, 5520, 1128, 48, 9746100, 200, 14586, 468
OFFSET
1,1
COMMENTS
a(n) is a divisor of A020696(n). - Ivan Neretin, May 27 2015
LINKS
EXAMPLE
Since the positive divisors of 6 are 1, 2, 3 and 6, a(6) = LCM(1+1,2+1,3+1,6+1) = LCM(2,3,4,7) = 84.
MAPLE
f:= n -> ilcm(op(map(`+`, numtheory:-divisors(n), 1)));
seq(f(n), n=1..100); # Robert Israel, Jul 24 2014
MATHEMATICA
a057643[n_Integer] := Apply[LCM, Map[# + 1 &, Divisors[n]]]; Table[a057643[n], {n, 10000}] (* Michael De Vlieger, Jul 19 2014 *)
PROG
(PARI) a(n)=lcm(apply(d->d+1, divisors(n))) \\ Charles R Greathouse IV, Feb 14 2013
(Python)
from math import lcm
from sympy import divisors
def A057643(n): return lcm(*(d+1 for d in divisors(n, generator=True))) # Chai Wah Wu, Jun 30 2022
CROSSREFS
Cf. A119250.
Cf. A020696 (product instead of LCM).
Sequence in context: A373985 A164020 A326579 * A073039 A373158 A322792
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 11 2000
STATUS
approved