login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073039
First multiple of n in A025487.
2
1, 2, 6, 4, 30, 6, 210, 8, 36, 30, 2310, 12, 30030, 210, 30, 16, 510510, 36, 9699690, 60, 210, 2310, 223092870, 24, 900, 30030, 216, 420, 6469693230, 30, 200560490130, 32, 2310, 510510, 210, 36, 7420738134810, 9699690, 30030, 120, 304250263527210
OFFSET
1,2
LINKS
FORMULA
If n = 2^e_1 * 3^e_2 * ... * prime(k)^e_k, then a(n) = 2^max(e_1, e_2, ..., e_k) * 3^max(e_2, ..., e_k) * ... * prime(k-1)^max(e_{k-1}, e_k) * prime(k)^e_k = lcm_{i=1}^k prime(k)#^e_k. In particular, if p prime, a(p) = p# (primorial, A002110). When gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). Also, a(n^k) = a(n)^k. - Franklin T. Adams-Watters, Oct 24 2006
MATHEMATICA
prim[p_] := Product[Prime[i], {i, PrimePi[p]}]; a[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; LCM @@ ((prim /@ p)^e)]; Array[a, 50] (* Amiram Eldar, Dec 30 2020 *)
CROSSREFS
Sequence in context: A164020 A326579 A057643 * A373158 A322792 A253588
KEYWORD
nonn
AUTHOR
Jeff Burch, Aug 22 2002
STATUS
approved