|
|
A073036
|
|
Take A000040, omit commas: 23571113171923..., select primes seen when scanning three consecutive digits from left.
|
|
0
|
|
|
571, 113, 131, 317, 719, 293, 313, 137, 347, 359, 167, 677, 173, 379, 983, 389, 997, 971, 101, 11, 103, 31, 107, 71, 109, 911, 113, 131, 127, 271, 131, 311, 113, 137, 139, 149, 491, 151, 157, 571, 163, 631, 167, 173, 317, 179, 181, 811, 191, 911, 193, 197
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Because leading zeroes are permitted, some of the terms have less than three digits. The first single-digit term is a(371). - Harvey P. Dale, Feb 03 2019
|
|
LINKS
|
Table of n, a(n) for n=1..52.
|
|
EXAMPLE
|
In the sequence 2357111317192329... (primes without delimiters) 3-digit primes are: 571, 113, 131, 317,
|
|
MATHEMATICA
|
p200=Flatten[IntegerDigits[Prime[Range[200]]]]; n=3; (* n-digit primes!*) pn=Partition[p200, n, 1]; ln=Length[pn]; tab=Table[Sum[10^(n-k)*pn[[i, k]], {k, n}], {i, ln}]; Select[tab, PrimeQ]
Select[FromDigits/@Partition[Flatten[IntegerDigits/@Prime[ Range[ 50]]], 3, 1], PrimeQ] (* Harvey P. Dale, Feb 03 2019 *)
|
|
CROSSREFS
|
Sequence in context: A268203 A268248 A246229 * A020381 A142767 A251384
Adjacent sequences: A073033 A073034 A073035 * A073037 A073038 A073039
|
|
KEYWORD
|
easy,nonn,base
|
|
AUTHOR
|
Zak Seidov, Aug 22 2002
|
|
EXTENSIONS
|
Definition clarified by Harvey P. Dale, Feb 03 2019
|
|
STATUS
|
approved
|
|
|
|