

A073035


Take A000040, omit commas: 23571113171923..., select 2digit primes seen when scanning from left.


0



23, 71, 11, 11, 13, 31, 17, 71, 19, 23, 29, 31, 13, 37, 41, 43, 47, 53, 59, 61, 67, 71, 17, 73, 37, 79, 83, 89, 97, 71, 11, 3, 31, 7, 71, 11, 13, 31, 71, 13, 31, 11, 13, 37, 71, 13, 11, 71, 31, 67, 71, 17, 73, 31, 17, 79, 11, 19, 11, 19, 31, 19, 97, 71, 19, 11, 23, 29, 23, 23
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The sequence allows leading zeroes, so for example 03 = 3 is treated as a valid twodigit prime.  Harvey P. Dale, May 06 2023


LINKS



EXAMPLE

In the sequence 2357111317192329... (primes without delimiters) twodigit primes are 23, 71, 11, 11, 13, 31, 17,


MATHEMATICA

p200=Flatten[IntegerDigits[Prime[Range[200]]]]; n=2; (* ndigit primes!*) pn=Partition[p200, n, 1]; ln=Length[pn]; tab=Table[Sum[10^(nk)*pn[[i, k]], {k, n}], {i, ln}]; Select[tab, PrimeQ]
Module[{nn=100, prs}, prs=Flatten[IntegerDigits/@Prime[Range[nn]]]; Select[FromDigits/@ Partition[prs, 2, 1], PrimeQ]] (* Harvey P. Dale, May 06 2023 *)


CROSSREFS



KEYWORD

easy,nonn,base


AUTHOR



STATUS

approved



