login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342360
Decimal expansion of 1/(Omega+1)^2, where Omega=LambertW(1) is the Omega constant.
2
4, 0, 7, 1, 7, 6, 3, 8, 7, 2, 9, 6, 5, 6, 7, 1, 5, 7, 9, 0, 2, 8, 9, 0, 2, 0, 4, 7, 3, 5, 3, 9, 7, 6, 7, 7, 3, 1, 0, 5, 1, 0, 6, 4, 4, 1, 3, 4, 5, 2, 8, 4, 6, 5, 1, 4, 4, 9, 3, 3, 3, 9, 6, 9, 2, 9, 8, 1, 3, 2, 0, 9, 6, 6, 7, 5, 4, 1, 8, 5, 8, 6, 9, 5, 0, 8, 4, 0, 5, 5, 0, 8, 9, 6, 6, 6
OFFSET
0,1
FORMULA
Equals cos(A342359)^4 = 1/(A030178+1)^2 = (1-sqrt(A342361))^2.
Equals Integral_{t=0..1} (-t/LambertW(-1,-t*Omega^omega))^Omega, where omega=1/Omega=1/LambertW(1).
Equals A115287^2. - Vaclav Kotesovec, Mar 12 2021
EXAMPLE
0.40717638729656715790289020473539767731...
MATHEMATICA
Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Cos[xi]^4, 120]
Omega=LambertW[1]; N[1/(Omega+1)^2, 120]
Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1, -t*Omega^omega])^Omega, {t, 0, 1}, WorkingPrecision->120]
PROG
(PARI) cos(atan(sqrt(lambertw(1))))^4
(PARI) my(Omega=lambertw(1)); 1/(Omega+1)^2
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Gleb Koloskov, Mar 09 2021
STATUS
approved