login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342361
Decimal expansion of 1/(omega+1)^2, where omega=1/LambertW(1).
2
1, 3, 0, 9, 6, 8, 9, 0, 0, 5, 6, 6, 3, 4, 5, 6, 0, 0, 8, 5, 8, 0, 7, 5, 4, 3, 3, 6, 9, 5, 6, 3, 7, 0, 4, 8, 4, 2, 2, 6, 4, 2, 9, 6, 1, 5, 5, 6, 4, 7, 3, 1, 8, 4, 3, 0, 5, 9, 6, 7, 0, 0, 9, 6, 2, 9, 1, 2, 9, 0, 0, 7, 5, 5, 4, 0, 2, 1, 6, 9, 2, 6, 1, 3, 0, 8, 0, 3, 5, 0, 0, 6, 8, 6, 1, 1
OFFSET
0,2
FORMULA
Equals Integral_{t=0..1} (-t/W(-1,-t*Omega^omega))^omega, where omega = 1/Omega = 1/LambertW(1).
Equals sin(A342359)^4 = 1/(A030797+1)^2 = (1-sqrt(A342360))^2.
EXAMPLE
0.1309689005663456008580754336956370484226429615564731843
MATHEMATICA
Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Sin[xi]^4, 120]
omega=1/LambertW[1]; N[1/(omega+1)^2, 120]
Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1, -t*Omega^omega])^omega, {t, 0, 1}, WorkingPrecision->120]
PROG
(PARI) my(Omega=lambertw(1), xi=atan(sqrt(Omega))); sin(xi)^4
(PARI) 1/(1/lambertw(1)+1)^2
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Gleb Koloskov, Mar 09 2021
STATUS
approved