login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 1/(omega+1)^2, where omega=1/LambertW(1).
2

%I #10 Apr 04 2021 01:11:41

%S 1,3,0,9,6,8,9,0,0,5,6,6,3,4,5,6,0,0,8,5,8,0,7,5,4,3,3,6,9,5,6,3,7,0,

%T 4,8,4,2,2,6,4,2,9,6,1,5,5,6,4,7,3,1,8,4,3,0,5,9,6,7,0,0,9,6,2,9,1,2,

%U 9,0,0,7,5,5,4,0,2,1,6,9,2,6,1,3,0,8,0,3,5,0,0,6,8,6,1,1

%N Decimal expansion of 1/(omega+1)^2, where omega=1/LambertW(1).

%F Equals Integral_{t=0..1} (-t/W(-1,-t*Omega^omega))^omega, where omega = 1/Omega = 1/LambertW(1).

%F Equals sin(A342359)^4 = 1/(A030797+1)^2 = (1-sqrt(A342360))^2.

%e 0.1309689005663456008580754336956370484226429615564731843

%t Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Sin[xi]^4,120]

%t omega=1/LambertW[1]; N[1/(omega+1)^2,120]

%t Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1,-t*Omega^omega])^omega,{t,0,1}, WorkingPrecision->120]

%o (PARI) my(Omega=lambertw(1), xi=atan(sqrt(Omega))); sin(xi)^4

%o (PARI) 1/(1/lambertw(1)+1)^2

%Y Cf. A342359, A342360, A030178, A030797.

%K nonn,cons

%O 0,2

%A _Gleb Koloskov_, Mar 09 2021