login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067698 Positive integers such that sigma(n) >= exp(gamma) * n * log(log(n)). 16
2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 36, 48, 60, 72, 84, 120, 180, 240, 360, 720, 840, 2520, 5040 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Previous name was: Numbers with relatively many and large divisors.

n is in the sequence iff sigma(n) >= exp(gamma) * n * log(log(n)), where gamma = Euler-Mascheroni constant and sigma(n) = sum of divisors of n.

Robin has shown that 5040 is the last element in the sequence iff the Riemann hypothesis is true. Moreover the sequence is infinite if the Riemann hypothesis is false. Gronwall's theorem says that

lim sup_{n -> infinity} sigma(n)/(n*log(log(n))) = exp(gamma).

REFERENCES

Guy Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.

LINKS

Table of n, a(n) for n=1..27.

G. Caveney, J.-L. Nicolas, and J. Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis, Integers 11 (2011), #A33.

G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, arXiv:1112.6010 [math.NT], 2011-2012; Ramanujan J., 29 (2012), 359-384.

J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543.

Eric Weisstein's World of Mathematics, Gronwall's Theorem

Eric Weisstein's World of Mathematics, Robin's Theorem

EXAMPLE

9 is in the sequence since sigma(9) = 13 > 12.6184... = exp(gamma) * 9 * log(log(9)).

MAPLE

with (numtheory): expgam := exp(evalf(gamma)): for i from 2 to 6000 do: a := sigma (i): b := expgam*i*evalf(ln(ln(i))): if a >= b then print (i, a, b): fi: od:

MATHEMATICA

fQ[n_] := DivisorSigma[1, n] > n*Exp@ EulerGamma*Log@ Log@n; lst = {}; Do[ If[ fQ[n], AppendTo[lst, n]], {n, 2, 10^4}]; lst (* Robert G. Wilson v, May 16 2003 *)

Select[Range[2, 5050], Exp[EulerGamma] # Log[Log[#]]-DivisorSigma[1, #]<0 &] (* Ant King, Feb 28 2013 *)

PROG

(PARI) is(n)=sigma(n) >= exp(Euler) * n * log(log(n)) \\ Charles R Greathouse IV, Feb 08 2017

(Python) from sympy import divisor_sigma, EulerGamma, E, log

print([n for n in range(2, 5041) if divisor_sigma(n) >= (E**EulerGamma * n * log(log(n)))]) # Karl-Heinz Hofmann, Apr 22 2022

CROSSREFS

Cf. A057641 (based on Lagarias' extension of Robin's result).

Cf. A091901, A189686, A004394, A196229.

Sequence in context: A093863 A337800 A091902 * A110495 A052347 A193299

Adjacent sequences: A067695 A067696 A067697 * A067699 A067700 A067701

KEYWORD

nonn,nice

AUTHOR

Ulrich Schimke (ulrschimke(AT)aol.com)

EXTENSIONS

Edited by N. J. A. Sloane at the suggestion of Max Alekseyev, Jul 17 2007

New name from Jud McCranie, Aug 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 20:34 EDT 2023. Contains 361433 sequences. (Running on oeis4.)