|
|
A093863
|
|
Unitary sigma-unitary phi super perfect numbers: USUP(USUP(n))= n/k for some integer k.
|
|
0
|
|
|
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 34, 36, 40, 48, 68, 72, 80, 136, 144, 256, 257, 272, 514, 768, 1028, 1280, 2056, 2304, 2808, 4112, 4320, 4352, 20280, 65536, 65537, 65792, 88704, 131074, 196416, 196608, 262148, 327680, 524296, 589824, 998400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
USUP(.)= A109712(.). Where k values are 1, they define fixed points of the function USUP(USUP(n)). k values larger than 1 exist, for example USUP(USUP(4320))= 4320/2.
k = 2 for 4320, 20280, 88704, 196416, 998400, ... - Amiram Eldar, Mar 01 2019
|
|
LINKS
|
Table of n, a(n) for n=1..50.
|
|
MAPLE
|
for n from 1 to 20000 do if n mod A109712(A109712(n)) = 0 then printf("%d, ", n); end if; end do:
|
|
MATHEMATICA
|
usigma[1]=1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); A047994[n_] := Times @@ (Power @@@ FactorInteger[n] - 1); A006519[n_] := 2^IntegerExponent[ n, 2]; usup[1] = 1; usup[n_ /; IntegerQ[Log[2, n]]] := n+1; usup[n_] := usigma[ A006519[n] ]*A047994[ n/A006519[n] ]; aQ[n_]:=Divisible[n, usup[usup[n]]]; Select[Range[10000], aQ] (* Amiram Eldar, Mar 01 2019 after Jean-François Alcover at A109712 *)
|
|
CROSSREFS
|
Cf. A092760, A109712.
Sequence in context: A029509 A048645 A173786 * A337800 A091902 A067698
Adjacent sequences: A093860 A093861 A093862 * A093864 A093865 A093866
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Yasutoshi Kohmoto, May 11 2004
|
|
EXTENSIONS
|
More terms from Amiram Eldar, Mar 01 2019
|
|
STATUS
|
approved
|
|
|
|