login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093863
Unitary sigma-unitary phi super perfect numbers: USUP(USUP(n))= n/k for some integer k.
0
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 34, 36, 40, 48, 68, 72, 80, 136, 144, 256, 257, 272, 514, 768, 1028, 1280, 2056, 2304, 2808, 4112, 4320, 4352, 20280, 65536, 65537, 65792, 88704, 131074, 196416, 196608, 262148, 327680, 524296, 589824, 998400
OFFSET
1,2
COMMENTS
USUP(.)= A109712(.). Where k values are 1, they define fixed points of the function USUP(USUP(n)). k values larger than 1 exist, for example USUP(USUP(4320))= 4320/2.
k = 2 for 4320, 20280, 88704, 196416, 998400, ... - Amiram Eldar, Mar 01 2019
MAPLE
for n from 1 to 20000 do if n mod A109712(A109712(n)) = 0 then printf("%d, ", n); end if; end do:
MATHEMATICA
usigma[1]=1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); A047994[n_] := Times @@ (Power @@@ FactorInteger[n] - 1); A006519[n_] := 2^IntegerExponent[ n, 2]; usup[1] = 1; usup[n_ /; IntegerQ[Log[2, n]]] := n+1; usup[n_] := usigma[ A006519[n] ]*A047994[ n/A006519[n] ]; aQ[n_]:=Divisible[n, usup[usup[n]]]; Select[Range[10000], aQ] (* Amiram Eldar, Mar 01 2019 after Jean-François Alcover at A109712 *)
CROSSREFS
Sequence in context: A364541 A048645 A173786 * A337800 A091902 A067698
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, May 11 2004
EXTENSIONS
More terms from Amiram Eldar, Mar 01 2019
STATUS
approved