|
|
A093860
|
|
Begin with the n-th composite number (A002808(n)) and go on adding successive composite numbers; a(n) is the first prime that arises as the sum.
|
|
0
|
|
|
37, 23, 17, 19, 67, 41, 29, 31, 97, 59, 41, 43, 71, 983, 383, 53, 293, 157, 277, 373, 67, 353, 71, 113, 653, 79, 467, 131, 89, 139, 193, 97, 311, 101, 103, 919, 109, 743, 113, 563, 307, 587, 457, 127, 263, 131, 419, 137, 139, 367, 613, 149, 151, 311, 653, 239
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..56.
|
|
EXAMPLE
|
a(5) = 10+12+14+15+16 because 10+12, 10+12+14 and 10+12+14+15 are composite, but 10+12+14+15+16 is prime.
|
|
MATHEMATICA
|
Rest[With[{cnos=Select[Range[100], !PrimeQ[#]&]}, Table[First[Select[ Accumulate[Drop[cnos, n-1]], PrimeQ]], {n, 60}]]] (* Harvey P. Dale, Aug 24 2011 *)
|
|
CROSSREFS
|
Cf. A073686.
Sequence in context: A068843 A284497 A033357 * A336480 A075400 A222293
Adjacent sequences: A093857 A093858 A093859 * A093861 A093862 A093863
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amarnath Murthy, Apr 19 2004
|
|
EXTENSIONS
|
More terms from David Wasserman, Apr 20 2007
|
|
STATUS
|
approved
|
|
|
|