login
A092760
Unitary-sigma unitary-phi perfect numbers.
3
6, 20, 72, 272, 2808, 5280, 12480, 65792, 251719680, 4295032832, 39462420480, 2151811200000, 375297105592320, 4238621367336960, 20203489717239782783648394117120, 84353101158454670682576150304666023245622804480
OFFSET
1,1
COMMENTS
USUP(n) = n/k for some integer k where USUP(n) = A109712(n).
FORMULA
Numbers of form 2^(2^m)*F_m appear in the sequence, where F_m means Fermat prime 2^(2^m)+1. Because USUP(2^(2^m)*F_m)=UnitarySigma(2^(2^m))*UnitaryPhi(F_m)=(2^(2^m)+1)*(F_m-1)= F_m*2^(2^m)).
Numbers of the following form exist in the sequence. For j=0 to 4, k*product F_i, i=0 to j, F_i means Fermat prime 2^(2^n)+1, k is an integer.
EXAMPLE
USUP(2^4*7^2)=UnitarySigma(2^4)*UnitaryPhi(7^2)=17*48= 816
So USUP(n) = UnitarySigma(n) if n=2^r = UnitaryPhi(n) if GCD(2,n)=1
Examples : a(1)=2*F_0, a(5)=2^5*11*F_0*F_1, ...., a(12)=2^40*4278255361*F_0*F_1*F_2*F_3*F_4.
Factorizations : 2*3; 2^2*5; 2^3*3^2; 2^4*17; 2^5*3*11*5; 2^6*5*13*3; 2^8*257; 2^12*3*5*17*241; 2^16*65537; 2^14*3*5*7^2*29*113; 2^10*3*5^5*7*11*41*71; 2^17*3*5*17*257*43691; 2^20*3*5*17*257*61681; 2^40*3*5*17*257*65537*4278255361; 2^48*3^6*5*7*11*13*17*23*47*137*193*65537*115903*22253377; 2^48*3^7*5*7*11*13*17*23*47*137*193*1093*65537*115903*22253377
MAPLE
A047994 := proc(n) local ifs, d ; if n = 1 then 1; else ifs := ifactors(n)[2] ; mul(op(1, op(d, ifs))^op(2, op(d, ifs))-1, d=1..nops(ifs)) ; fi ; end: A006519 := proc(n) local i ; for i in ifactors(n)[2] do if op(1, i) = 2 then RETURN( op(1, i)^op(2, i) ) ; fi ; od: RETURN(1) ; end: Usup := proc(n) local p2 ; p2 := A006519(n) ; (p2+1)*A047994(n/p2) ; end: for n from 1 do if n mod Usup(n) = 0 then print(n) ; fi; od: # R. J. Mathar, Dec 15 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, Apr 14 2004
EXTENSIONS
2808 inserted by R. J. Mathar, Dec 15 2008
39462420480 and 2151811200000 inserted by Andrew Lelechenko, Apr 10 2014
STATUS
approved