OFFSET
1,2
COMMENTS
The UO-sigma function is defined by UO-sigma(n) = A069184(n).
E.g., UO-sigma(2^4*7^2) = UnitarySigma(2^4)*sigma(7^2) = 17*57 = 969. So UO-sigma(n) = UnitarySigma(n) if n=2^r, or = sigma(n) if GCD(2,n)=1.
A UO-sigma perfect number satisfies UO-sigma(n) = k*n for some k.
The initial values of k are 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2. However, I conjecture that every positive integer >= 2 must appear.
Some interesting subsequences exist: s(n) := {a(1), a(4), a(9), a(11), ...} has the property that s(n-1)|s(n): 2*3, 2^3*3^2*7*13, 2^5*3^2*7*13*11, 2^7*3^2*7*11*13*43, 2^8*3^2*7*11*13*43*257, ...
LINKS
Andrew Lelechenko, Numbers such that A092356(n) = 2*n
Andrew Lelechenko, Numbers such that A092356(n) = 3*n
EXAMPLE
Sequence begins: 2*3, 2^2*3*5, 2^3*3^3*5, 2^3*3^2*7*13, 2^4*3^3*5*17, 2^5*3^3*5*11, 2^6*3*5*7*13, 2^4*3^2*7*13*17, 2^5*3^2*7*13*11, 2^7*3^3*5*11*43, 2^7*3^2*7*11*13*43, ...
PROG
(PARI) is(n)=my(e=valuation(n, 2)); (sigma(n>>e) * if(e, 2^e+1, 1)) % n == 0 \\ Charles R Greathouse IV, Apr 10 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, Mar 20 2004
EXTENSIONS
Corrected by Andrew Lelechenko, Apr 10 2014
STATUS
approved