The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092353 Expansion of (1+x^3)/((1-x)^2*(1-x^3)^2). 3
 1, 2, 3, 7, 11, 15, 24, 33, 42, 58, 74, 90, 115, 140, 165, 201, 237, 273, 322, 371, 420, 484, 548, 612, 693, 774, 855, 955, 1055, 1155, 1276, 1397, 1518, 1662, 1806, 1950, 2119, 2288, 2457, 2653, 2849, 3045, 3270, 3495, 3720, 3976, 4232, 4488, 4777, 5066, 5355, 5679 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006. Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1). FORMULA G.f.: (1+x^3)/((1-x)^2*(1-x^3)^2) = (1+x^3)/((1-x)^4*(1+x+x^2)^2). a(n) = Sum(i=1..n+3, floor(i/3)^2). - Enrique Pérez Herrero, Mar 20 2012 a(n) = (1/2)*(-4*t^3 + (2n-7)*t^2 + (4n-1)*t +2n +2), where t = floor(n/3). - Ridouane Oudra, Oct 19 2019 MAPLE seq(add(floor(i/3)^2, i=1..n+3), n=0..60); # Ridouane Oudra, Oct 19 2019 MATHEMATICA a[n_] := Sum[Floor[i/3]^2, {i, 1, n+3}]; Table[a[n], {n, 0, 100}] (* Enrique Pérez Herrero, Mar 20 2012 *) PROG (Sage) def A092353():     a, b, c, m = 0, 0, 0, 0     while True:         yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+c*(c+1)*(2*c+1)+6)//6         m = m + 1 if m < 2 else 0         if   m == 0: a += 1         elif m == 1: b += 1         elif m == 2: c += 1 a = A092353() print([next(a) for _ in range(52)]) # Peter Luschny, May 04 2016 CROSSREFS Cf. A005993. Sequence in context: A188529 A174060 A285278 * A189374 A180516 A100963 Adjacent sequences:  A092350 A092351 A092352 * A092354 A092355 A092356 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 20 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 23:22 EST 2021. Contains 349445 sequences. (Running on oeis4.)