login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189374 Expansion of 1/((1-x)^5*(x^2+x+1)^3). 4
1, 2, 3, 7, 11, 15, 25, 35, 45, 65, 85, 105, 140, 175, 210, 266, 322, 378, 462, 546, 630, 750, 870, 990, 1155, 1320, 1485, 1705, 1925, 2145, 2431, 2717, 3003, 3367, 3731, 4095, 4550, 5005, 5460, 6020, 6580, 7140, 7820 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The Ca1(n) and Ze3(n) triangle sums of A139600 lead to the sequence given above, see the formulas. For the definitions of these triangle sums see A180662.

LINKS

Table of n, a(n) for n=0..42.

Index entries for linear recurrences with constant coefficients, signature (2,-1,3,-6,3,-3,6,-3,1,-2,1)

FORMULA

a(n) = (2*a(n-1) + 2*a(n-2) + (8+n)*a(n-3))/n with a(0)=1, a(1)=2, a(2)=3 and a(3)=7.

a(n) = sum(A011779(n-k)*A049347(k), k=0..n).

Ca1(n) = A189374(n-3) - A189374(n-4) - A189374(n-6) + 2*A189374(n-7).

Ze3(n) = 2*A189374(n-3) - A189374(n-4) - 2*A189374(n-6) + 5*A189374(n-7) with A189374(n)=0 for n <= -1.

a(n) = (floor(n/3)+1)*(floor(n/3)+2)*(floor(n/3)+3)*(3*floor(n/3)+4*(4-(3*floor((n+3)/3)-n)))/24. - Luce ETIENNE, Jun 29 2015

MAPLE

a:= proc(n) option remember; `if` (n<4, [1, 2, 3, 7][n+1], (2*a(n-1) +2*a(n-2) +(8+n) *a(n-3))/n) end: seq (a(n), n=0..50);

CROSSREFS

Cf. A139600, A189375, A189376.

Sequence in context: A174060 A285278 A092353 * A180516 A100963 A197636

Adjacent sequences:  A189371 A189372 A189373 * A189375 A189376 A189377

KEYWORD

easy,nonn

AUTHOR

Johannes W. Meijer, Apr 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 23:20 EST 2020. Contains 331104 sequences. (Running on oeis4.)