login
A189374
Expansion of 1/((1-x)^5*(x^2+x+1)^3).
4
1, 2, 3, 7, 11, 15, 25, 35, 45, 65, 85, 105, 140, 175, 210, 266, 322, 378, 462, 546, 630, 750, 870, 990, 1155, 1320, 1485, 1705, 1925, 2145, 2431, 2717, 3003, 3367, 3731, 4095, 4550, 5005, 5460, 6020, 6580, 7140, 7820
OFFSET
0,2
COMMENTS
The Ca1(n) and Ze3(n) triangle sums of A139600 lead to the sequence given above, see the formulas. For the definitions of these triangle sums see A180662.
FORMULA
a(n) = (2*a(n-1) + 2*a(n-2) + (8+n)*a(n-3))/n with a(0)=1, a(1)=2, a(2)=3 and a(3)=7.
a(n) = sum(A011779(n-k)*A049347(k), k=0..n).
Ca1(n) = A189374(n-3) - A189374(n-4) - A189374(n-6) + 2*A189374(n-7).
Ze3(n) = 2*A189374(n-3) - A189374(n-4) - 2*A189374(n-6) + 5*A189374(n-7) with A189374(n)=0 for n <= -1.
a(n) = (floor(n/3)+1)*(floor(n/3)+2)*(floor(n/3)+3)*(3*floor(n/3)+4*(4-(3*floor((n+3)/3)-n)))/24. - Luce ETIENNE, Jun 29 2015
MAPLE
a:= proc(n) option remember; `if` (n<4, [1, 2, 3, 7][n+1], (2*a(n-1) +2*a(n-2) +(8+n) *a(n-3))/n) end: seq (a(n), n=0..50);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Apr 29 2011
STATUS
approved