login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A189376
Expansion of 1/((1-x)^5*(x^3+x^2+x+1)^2).
4
1, 3, 6, 10, 17, 27, 40, 56, 78, 106, 140, 180, 230, 290, 360, 440, 535, 645, 770, 910, 1071, 1253, 1456, 1680, 1932, 2212, 2520, 2856, 3228, 3636, 4080, 4560, 5085, 5655, 6270, 6930, 7645, 8415, 9240, 10120, 11066, 12078
OFFSET
0,2
COMMENTS
The Gi2 triangle sums of A139600 lead to the sequence given above, see the formulas. For the definitions of the Gi2 and other triangle sums see A180662.
LINKS
FORMULA
a(n) = sum(A144678(n-k), k=0..n).
Gi2(n) = A189376(n-1) - A189376(n-2) - A189376(n-5) + 2*A189376(n-6) with A189376(n)=0 for n <= -1.
a(0)=1, a(1)=3, a(2)=6, a(3)=10, a(4)=17, a(5)=27, a(6)=40, a(7)=56, a(8)=78, a(9)=106, a(10)=140, a(n)=3*a(n-1)-3*a(n-2)+a(n-3)+ 2*a(n-4)- 6*a(n-5)+6*a(n-6)-2*a(n-7)-a(n-8)+3*a(n-9)-3*a(n-10)+a(n-11). - Harvey P. Dale, Apr 12 2015
MAPLE
a:= n-> coeff (series (1/((1-x)^5*(x^3+x^2+x+1)^2), x, n+1), x, n):
seq (a(n), n=0..50);
MATHEMATICA
CoefficientList[Series[1/((1-x)^5(x^3+x^2+x+1)^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1, 2, -6, 6, -2, -1, 3, -3, 1}, {1, 3, 6, 10, 17, 27, 40, 56, 78, 106, 140}, 50] (* Harvey P. Dale, Apr 12 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Apr 29 2011
STATUS
approved