login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286304
Number of connected induced (non-null) subgraphs of the complete binary tree with n nodes.
2
1, 3, 6, 10, 17, 24, 37, 51, 78, 110, 173, 229, 340, 477, 750, 1024, 1571, 2253, 3616, 5024, 7839, 11356, 18389, 25173, 38740, 55697, 89610, 124870, 195389, 283536, 459829, 636123, 988710, 1429442, 2310905, 3227617, 5061040, 7352817, 11936370, 16526444
OFFSET
1,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..5651 (first 255 terms from Andrew Howroyd)
Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
FORMULA
a(2^k-1) = A285934(k-1).
MATHEMATICA
Join[{1}, Table[g=KaryTree[n]; -1 + ParallelSum[Boole@ConnectedGraphQ@Subgraph[g, s], {s, Subsets@Range[n]}], {n, 2, 16}]]
(* Second program: *)
l[n_] := With[{h = 2^Floor[Log[2, n]]}, Min[h - 1, n - h/2]];
b[n_] := b[n] = 1 + If[n <= 1, n, b[l[n]]*b[n - 1 - l[n]]];
a[n_] := a[n] = If[n <= 1, n, b[n] - 1 + a[l[n]] + a[n - 1 - l[n]]];
Array[a, 40] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
PROG
(PARI)
l(n)={my(h=2^floor(log(n)/log(2))); min(h-1, n-h/2)}
b(n)=1+if(n<=1, n, b(l(n))*b(n-1-l(n)));
a(n)=if(n<=1, n, b(n)-1 + a(l(n)) + a(n-1-l(n))); \\ Andrew Howroyd, May 22 2017
CROSSREFS
Cf. A285934, A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).
Sequence in context: A094272 A236326 A308699 * A005045 A189376 A069241
KEYWORD
nonn
AUTHOR
Giovanni Resta, May 05 2017
EXTENSIONS
Terms a(35) and beyond from Andrew Howroyd, May 22 2017
STATUS
approved