login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286185
Number of connected induced (non-null) subgraphs of the Möbius ladder graph with 2n nodes.
16
3, 15, 55, 173, 511, 1451, 4019, 10937, 29371, 78055, 205679, 538149, 1399607, 3621315, 9327723, 23931633, 61186163, 155949119, 396369831, 1004904733, 2541896559, 6416348251, 16165611043, 40657256617, 102090514731, 255968753175, 640899345631, 1602640560533
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Möbius Ladder
Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
FORMULA
a(n) = 6*a(n-1) - 11*a(n-2) + 4*a(n-3) + 5*a(n-4) - 2*a(n-5) - a(n-6), for n>6 (conjectured).
a(n) = 1/4*((1-sqrt(2))^n*(4-3*sqrt(2)*n) + (1+sqrt(2))^n*(4+3*sqrt(2)*n)) - 1 - n (conjectured). - Eric W. Weisstein, May 08 2017
a(n) = Lucas(n, 2) + 3*n*Fibonacci(n, 2) - n - 1, where Lucas(n, 2) = A002203(n) and Fibonacci(n, 2) = A000129(n) (conjectured). - Eric W. Weisstein, May 08 2017
G.f. (subject to the above conjectures. In fact all three conjectures are equivalent): (3*x-3*x^2-2*x^3-4*x^4+3*x^5-x^6)/(1-3*x+x^2+x^3)^2. - Robert Israel, May 08 2017
MATHEMATICA
a[n_] := Block[{g = CirculantGraph[2 n, {1, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[2 n]}]]; Array[a, 8]
CROSSREFS
Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).
Sequence in context: A117960 A176288 A119113 * A152896 A007973 A261737
KEYWORD
nonn
AUTHOR
Giovanni Resta, May 04 2017
EXTENSIONS
a(17)-a(28) from Andrew Howroyd, May 20 2017
STATUS
approved