login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117960
Triangular numbers with only odd digits.
7
1, 3, 15, 55, 91, 153, 171, 351, 595, 1711, 1953, 5151, 5995, 9591, 11175, 11935, 15753, 15931, 17391, 17955, 31375, 33153, 35511, 73153, 153735, 171991, 173755, 193131, 193753, 371953, 399171, 513591, 551775, 559153, 571915, 791911, 917335, 939135, 1335795
OFFSET
1,2
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
FORMULA
Intersection of A000217 and A014261. - M. F. Hasler, Nov 20 2021
MAPLE
b:= proc(n) option remember; local k; for k from
1+`if`(n=1, 0, b(n-1)) while 0=mul(irem(i, 2),
i=convert(k*(k+1)/2, base, 10) ) do od; k
end:
a:= n-> (t-> t*(t+1)/2)(b(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Jul 12 2015
MATHEMATICA
Select[Table[n(n+1)/2, {n, 0, 1650}], ContainsOnly[IntegerDigits[#], {1, 3, 5, 7, 9}]&] (* James C. McMahon, Sep 24 2024 *)
PROG
(PARI) select( {is_A117960(n)=is_A000217(n)&&is_A014261(n)}, [2*n+1|n<-[0..99999]]) \\ M. F. Hasler, Nov 20 2021
(PARI) apply( {A117960_row(n, t=10^n\9, L=List())=forvec(v=vector(n, i, [0, 4]), is_A000217(n=t+fromdigits(v)*2)&&listput(L, n)); L}, [1..6]) \\ row(n) = terms with n digits. Use concat(%) to flatten. - M. F. Hasler, Nov 23 2021
(Python)
from itertools import islice, count
def A117960(): return filter(lambda n: set(str(n)) <= {'1', '3', '5', '7', '9'}, (m*(m+1)//2 for m in count(0)))
A117960_list = list(islice(A117960(), 20)) # Chai Wah Wu, Nov 22 2021
CROSSREFS
Cf. A000217 (triangular numbers), A014261 (numbers with only odd digits), A117978.
Sequence in context: A026696 A082708 A093925 * A176288 A119113 A286185
KEYWORD
base,nonn
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), May 03 2006
EXTENSIONS
Some terms corrected by Alois P. Heinz, Jul 12 2015
STATUS
approved