login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176288
Hankel transform of A176287.
2
1, 3, 15, 55, 131, 163, -169, -1521, -4437, -7429, -2945, 26471, 101587, 207699, 201639, -306497, -1907461, -4718165, -6464305, 547863, 30463779, 93816323, 161591287, 97035119, -400669877, -1676486565, -3504149217, -3693262649
OFFSET
0,2
FORMULA
G.f.: (1-3*x+14*x^2-8*x^3)/(1-3*x+4*x^2)^2.
a(n) = 2^n*( (2n+7)*sin(2n*atan(1/sqrt(7)))/sqrt(7) - (2*n-1)*cos(2n*atan(1/sqrt(7)))).
MAPLE
seq(coeff(series((1-3*x+14*x^2-8*x^3)/(1-3*x+4*x^2)^2, x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 25 2019
MATHEMATICA
LinearRecurrence[{6, -17, 24, -16}, {1, 3, 15, 55}, 30] (* Harvey P. Dale, Jun 12 2017 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-3*x+14*x^2-8*x^3)/(1-3*x+4*x^2)^2) \\ G. C. Greubel, Nov 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-3*x+14*x^2-8*x^3)/(1-3*x+4*x^2)^2 )); // G. C. Greubel, Nov 25 2019
(Sage)
def A176288_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-3*x+14*x^2-8*x^3)/(1-3*x+4*x^2)^2 ).list()
A176288_list(30) # G. C. Greubel, Nov 25 2019
(GAP) a:=[1, 3, 15, 55];; for n in [5..30] do a[n]:=6*a[n-1]-17*a[n-2]+24*a[n-3] -16*a[n-4]; od; a; # G. C. Greubel, Nov 25 2019
CROSSREFS
Sequence in context: A082708 A093925 A117960 * A119113 A286185 A152896
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 14 2010
STATUS
approved