login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176286
Triangle T(n,k) = 1 + 2*k*(n-k)*(k^2 -n*k +2*n^2) read by rows.
1
1, 1, 1, 1, 15, 1, 1, 65, 65, 1, 1, 175, 225, 175, 1, 1, 369, 529, 529, 369, 1, 1, 671, 1025, 1135, 1025, 671, 1, 1, 1105, 1761, 2065, 2065, 1761, 1105, 1, 1, 1695, 2785, 3391, 3585, 3391, 2785, 1695, 1, 1, 2465, 4145, 5185, 5681, 5681, 5185, 4145, 2465, 1
OFFSET
0,5
COMMENTS
This could be written T(n,k) = 1-(n-k)^4 -k^4 +n^4, the quartic analog of A176284.
Row sums are {1, 2, 17, 132, 577, 1798, 4529, 9864, 19329, 34954, 59345, ...} = (n+1)*(9*n^4 -9*n^3 -n^2 +n +15)/15.
FORMULA
T(n,k) = T(n,n-k).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 15, 1;
1, 65, 65, 1;
1, 175, 225, 175, 1;
1, 369, 529, 529, 369, 1;
1, 671, 1025, 1135, 1025, 671, 1;
1, 1105, 1761, 2065, 2065, 1761, 1105, 1;
1, 1695, 2785, 3391, 3585, 3391, 2785, 1695, 1;
1, 2465, 4145, 5185, 5681, 5681, 5185, 4145, 2465, 1;
1, 3439, 5889, 7519, 8449, 8751, 8449, 7519, 5889, 3439, 1;
MAPLE
seq(seq(n^4 -(n-k)^4 -k^4 +1, k=0..n), n=0..12); # G. C. Greubel, Nov 25 2019
MATHEMATICA
(* First program *)
f[n_, m_, q_]:= f[n, m, q] = 1 -(n-m)^q -m^q +n^q;
Table[Flatten[Table[Table[f[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 1, 10}]
(* Second program *)
Table[n^4 -(n-k)^4 -k^4 +1, {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 25 2019 *)
PROG
(PARI) T(n, k) = n^4 -(n-k)^4 -k^4 +1; \\ G. C. Greubel, Nov 25 2019
(Magma) [n^4 -(n-k)^4 -k^4 +1: k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 25 2019
(Sage) [[n^4 -(n-k)^4 -k^4 +1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 25 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> n^4 -(n-k)^4 -k^4 +1 ))); # G. C. Greubel, Nov 25 2019
CROSSREFS
Sequence in context: A040225 A070644 A174389 * A111805 A238754 A176226
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Apr 14 2010
EXTENSIONS
Edited by R. J. Mathar, May 03 2013
STATUS
approved