login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174389
Triangle T(n, k) = c(n, q)/c(k, q) if k <= floor(n/2), otherwise c(n, q)/c(n-k, q), where c(n, q) = Product_{j=1..n} (1 - q^j) and q = 4, read by rows.
3
1, 1, 1, 1, -15, 1, 1, -63, -63, 1, 1, -255, 16065, -255, 1, 1, -1023, 260865, 260865, -1023, 1, 1, -4095, 4189185, -1068242175, 4189185, -4095, 1, 1, -16383, 67088385, -68631417855, -68631417855, 67088385, -16383, 1
OFFSET
0,5
FORMULA
T(n, k) = c(n, q)/c(k, q) if k <= floor(n/2), otherwise c(n, q)/c(n-k, q), where c(n, q) = Product_{j=1..n} (1 - q^j) and q = 4.
T(n, n-k) = T(n, k).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -15, 1;
1, -63, -63, 1;
1, -255, 16065, -255, 1;
1, -1023, 260865, 260865, -1023, 1;
1, -4095, 4189185, -1068242175, 4189185, -4095, 1;
1, -16383, 67088385, -68631417855, -68631417855, 67088385, -16383, 1;
MATHEMATICA
c[n_, q_]= Product[1-q^i, {i, n}];
T[n_, k_, q_]= If[Floor[n/2]>=k, c[n, q]/c[n-k, q], c[n, q]/c[k, q]];
Table[T[n, k, 4], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_, q_]= With[{QP=QPochhammer}, If[k<=Floor[n/2], QP[q, q, n]/QP[q, q, n-k], QP[q, q, n]/QP[q, q, k]]];
Table[T[n, k, 4], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 04 2022 *)
PROG
(Magma)
QPochhammer:= func< n, a, q | n eq 0 select 1 else (&*[1-a*q^j: j in [0..n-1]]) >;
T:= func< n, k, q | k le Floor(n/2) select QPochhammer(n, q, q)/QPochhammer(n-k, q, q) else QPochhammer(n, q, q)/QPochhammer(k, q, q) >;
A174389:= func< n, k | T(n, k, 4) >;
[A174389(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 04 2022
(SageMath)
from sage.combinat.q_analogues import q_pochhammer
def T(n, k, q):
if ((n//2)>k-1): return q_pochhammer(n, q, q)/q_pochhammer(n-k, q, q)
else: return q_pochhammer(n, q, q)/q_pochhammer(k, q, q)
def A174389(n, k): return T(n, k, 4)
flatten([[A174389(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Dec 04 2022
CROSSREFS
Triangles of q: A000012 (q=0), A174387 (q=2), A174388 (q=3), this sequence (q=4).
Sequence in context: A172429 A040225 A070644 * A176286 A111805 A238754
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Mar 18 2010
EXTENSIONS
Edited by G. C. Greubel, Dec 04 2022
STATUS
approved