

A174392


Neither n1 nor n+1 is prime.


0



0, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 39, 41, 43, 45, 47, 49, 50, 51, 53, 55, 56, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 75, 76, 77, 79, 81, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 116, 117, 118
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Numbers n such that n+1 are both nonprime. Zero together with inverse hyperbolic cotangent reducible numbers.
Union of {0} and A099047. [From R. J. Mathar, Aug 09 2010]


LINKS

Table of n, a(n) for n=1..69.


EXAMPLE

a(1)=0 because 01=1 and 0+1=1 are nonprime; a(2)=5 because 51=4 and 5+1=6 are nonprime.


MATHEMATICA

Select[Range[0, 150], !PrimeQ[#1]&&!PrimeQ[#+1]&] (* Harvey P. Dale, Aug 15 2012 *)
Join[{0}, Mean/@SequencePosition[Table[If[PrimeQ[n], 0, 1], {n, 200}], {1, x_, 1}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 17 2019 *)


CROSSREFS

Cf. A084926.
Sequence in context: A106505 A097985 A099047 * A084926 A333038 A049013
Adjacent sequences: A174389 A174390 A174391 * A174393 A174394 A174395


KEYWORD

nonn,easy


AUTHOR

JuriStepan Gerasimov, Mar 18 2010


EXTENSIONS

Corrected by Charles R Greathouse IV, Mar 18 2010


STATUS

approved



