login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176285
a(1) = 1, and then 4*(2*n + 1)^2*a(n+1) + n^2*a(n) = (205*n^2 + 160*n + 32)*binomial(2*n-1, n)^3 (n = 1, 2, 3, ...).
5
1, 11, 316, 12011, 522376, 24593348, 1219951188, 62798884331, 3323228619736, 179665076698136, 9880531254032176, 550994628527745476, 31084678988906064016, 1770908612898043660556, 101738260887234550287316
OFFSET
1,2
COMMENTS
On Apr 04 2010, Zhi-Wei Sun introduced this sequence and conjectured that each term a(n) is a positive integer. He also guessed that a(n) is odd if and only if n is a power of two. It is easy to see that 8*n^2*binomial(2*n,n)^2*a(n) equals Sum_{k=0..n-1} (205*k^2 + 160*k + 32)*(-1)^(n-1-k)*binomial(2*k,k)^5. Sun also conjectured that for any prime p > 5 we have Sum_{k=0..p-1} (205*k^2 + 160*k + 32)(-1)^k*binomial(2*k,k)^5 == 32*p^2 + 64*p^3*Sum_{k=1..p-1} 1/k (mod p^7) and Sum_{k=0..(p-1)/2} (205*k^2 + 160*k + 32)(-1)^k*binomial(2*k,k)^5 == 32*p^2 + 896/3*p^5*B_{p-3} (mod p^6), where B_0, B_1, B_2, ... are Bernoulli numbers. It is also remarkable that Sum_{n>0} (-1)^n(205*n^2 - 160*n + 32)/(n^5*binomial(2*n,n)^5) = -2*zeta(3) as proved by T. Amdeberhan and D. Zeilberger via the WZ method.
LINKS
T. Amdeberhan and D. Zeilberger, Hypergeometric series acceleration via the WZ method, Electron. J. Combin. 4(1997), no.2, #R3.
J. Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, arXiv:1104.0396 [math.NT], 2011; Ramanujan J. 15(2008), 219-234.
Zhi-Wei Sun, Open Conjectures on Congruences, preprint, arXiv:0911.5665 [math.NT], 2009-2011.
FORMULA
a(n) = (Sum_{k=0..n-1} (205*k^2 + 160*k + 32)(-1)^(n-1-k)*binomial(2*k,k)^5)/(8*n^2*binomial(2*n,n)^2).
From Peter Bala, Jul 11 2024: (Start)
a(n+1) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(n+k, k) * binomial(2*n+k+1, n).
Compare with the identity Sum_{k = 0..n} binomial(n, k)^2 * binomial(n+k, k) * binomial(2*n+k, n) = binomial(2*n, n)^3 = A002897(n).
a(n) = binomial(2*n-1, n-1)*hypergeom([-n+1, -n+1, n, 2*n], [1, 1, n+1], 1).
P-recursive: 4*(205*n^2 - 250*n + 77)*(2*n + 1)^2*n^3*a(n+1) = (209715*n^7 - 360710*n^6 + 147891*n^5 + 65280*n^4 - 57280*n^3 + 3680*n^2 + 5120*n - 1024)*a(n) + 8*(205*n^2 + 160*n + 32)*(n - 1)^2*(2*n - 1)^3*a(n-1) with a(1) = 1 and a(2) = 11.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r. (End)
a(n) ~ 2^(6*n-3) / (5*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Jul 17 2024
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1) * binomial(n-1, k) * binomial(2*n+k-1, k) * A108625(n-1, k). Cf. A002897. - Peter Bala, Oct 16 2024
EXAMPLE
For n = 2 we have a(2) = 11 since 4*(2*1 + 1)^2*a(2) = -1^2*a(1) + (205*1^2 + 160*1 + 32)*binomial(2*1 - 1,1)^3 = 396.
MAPLE
a := proc(n) option remember; if n = 1 then 1 elif n = 2 then 11 else
( (209715*n^7 - 1828715*n^6 + 6716166*n^5 - 13424850*n^4 + 15714735*n^3 - 10726375*n^2 + 3936520*n - 598220)*a(n-1) + 8*(n - 2)^2*(2*n - 3)^3*(205*n^2 - 250*n + 77)*a(n-2) )/( 4*(n - 1)^3*(2*n - 1)^2*(205*n^2 - 660*n + 532) ) end if; end:
seq(a(n), n = 1..20); # Peter Bala, Jul 12 2024
MATHEMATICA
u[n_]:=u[n]=((205(n-1)^2+160(n-1)+32)Binomial[2n-3, n-1]^3-(n-1)^2*u[n-1])/(4(2n-1)^2); u[1]=1; Table[u[n], {n, 1, 50}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zhi-Wei Sun, Apr 14 2010
STATUS
approved