login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176290
Hankel transform of A105872.
1
1, 2, -3, -75, -650, -4507, -28267, -167406, -955271, -5310911, -28962586, -155616567, -826329687, -4345964510, -22675946635, -117526104883, -605643805098, -3105646720979, -15856669574339, -80653146223054
OFFSET
0,2
FORMULA
G.f.: (1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2.
MAPLE
seq(coeff(series((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2, x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 25 2019
MATHEMATICA
LinearRecurrence[{10, -27, 10, -1}, {1, 2, -3, -75}, 30] (* Harvey P. Dale, Oct 29 2017 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2) \\ G. C. Greubel, Nov 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2 )); // G. C. Greubel, Nov 25 2019
(Sage)
def A176290_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2).list()
A176290_list(30) # G. C. Greubel, Nov 25 2019
(GAP) a:=[1, 2, -3, -75];; for n in [5..30] do a[n]:=10*a[n-1]-27*a[n-2]+10*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Nov 25 2019
CROSSREFS
Cf. A105872.
Sequence in context: A234237 A276197 A042233 * A371143 A370988 A371269
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 14 2010
STATUS
approved