login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Hankel transform of A105872.
1

%I #15 Sep 08 2022 08:45:52

%S 1,2,-3,-75,-650,-4507,-28267,-167406,-955271,-5310911,-28962586,

%T -155616567,-826329687,-4345964510,-22675946635,-117526104883,

%U -605643805098,-3105646720979,-15856669574339,-80653146223054

%N Hankel transform of A105872.

%H G. C. Greubel, <a href="/A176290/b176290.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (10,-27,10,-1).

%F G.f.: (1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2.

%p seq(coeff(series((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2, x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Nov 25 2019

%t LinearRecurrence[{10,-27,10,-1},{1,2,-3,-75},30] (* _Harvey P. Dale_, Oct 29 2017 *)

%o (PARI) my(x='x+O('x^30)); Vec((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2) \\ _G. C. Greubel_, Nov 25 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2 )); // _G. C. Greubel_, Nov 25 2019

%o (Sage)

%o def A176290_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2).list()

%o A176290_list(30) # _G. C. Greubel_, Nov 25 2019

%o (GAP) a:=[1,2,-3,-75];; for n in [5..30] do a[n]:=10*a[n-1]-27*a[n-2]+10*a[n-3] -a[n-4]; od; a; # _G. C. Greubel_, Nov 25 2019

%Y Cf. A105872.

%K easy,sign

%O 0,2

%A _Paul Barry_, Apr 14 2010