login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105872
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k, n).
11
1, 2, 6, 21, 75, 273, 1009, 3770, 14202, 53846, 205216, 785460, 3017106, 11624580, 44905518, 173863965, 674506059, 2621371005, 10203609597, 39773263035, 155231706951, 606554343495, 2372544034143, 9289131196485, 36401388236461
OFFSET
0,2
LINKS
FORMULA
G.f.: 2/(4*x^2+sqrt(1-4*x)*(3*x+1)-5*x+1). - Vladimir Kruchinin, May 24 2014
Conjecture: -3*(n+1)*(7*n-2)*a(n) +6*(7*n+5)*(2*n-1)*a(n-1) -(n+1)*(7*n-2)*a(n-2) +2*(7*n+5)*(2*n-1)*a(n-3)=0. - R. J. Mathar, Nov 28 2014
a(n) ~ 2^(2*n+3) / (7*sqrt(Pi*n)). - Vaclav Kotesovec, Jan 28 2023
a(n) = [x^n] 1/((1-x^3) * (1-x)^(n+1)). - Seiichi Manyama, Apr 08 2024
MATHEMATICA
Table[Sum[Binomial[2n-3k, n], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Jan 13 2015 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-3*k, n)); \\ Seiichi Manyama, Jan 28 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 23 2005
EXTENSIONS
Erroneous title changed by Paul Barry, Apr 14 2010
Name corrected by Seiichi Manyama, Jan 28 2023
STATUS
approved