The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105871 a(n) = sum{k=0..floor(n/2), C(2*n-3*k, n)*C(n-k, k)} 1
 1, 2, 6, 22, 85, 336, 1350, 5492, 22554, 93300, 388201, 1622868, 6811056, 28680356, 121111440, 512684484, 2174928031, 9243973062, 39354962345, 167799259130, 716414975613, 3062437147352, 13105366936465, 56139506687280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..23. FORMULA a(n) = sum{k=0..floor(n/2), C(2*n-3*k, n)*C(n-k, k)} Conjecture: 5*n*(n-1)*(3*n-10)*a(n) -3*(n-1)*(21*n^2-63*n-20)*a(n-1) +3*(-3*n^3+107*n^2-446*n+444)*a(n-2) +(3*n^3-259*n^2+1279*n-1575)*a(n-3) +3*(-21*n^3+210*n^2-673*n+694)*a(n-4) -3*(n-3)*(3*n^2-8*n-7)*a(n-5) -2*(n-4)*(3*n-7)*(2*n-9)*a(n-6)=0. - R. J. Mathar, Feb 20 2015 MAPLE A105871 := proc(n) add(binomial(2*n-3*k, n)*binomial(n-k, k), k=0..floor(n/2)) ; end proc: # R. J. Mathar, Feb 20 2015 MATHEMATICA Table[Sum[Binomial[2n-3k, n]Binomial[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Jan 23 2023 *) PROG (PARI) a(n)=sum(k=0, floor(n/2), binomial(2*n-3*k, n)*binomial(n-k, k) ); /* Joerg Arndt, Mar 06 2013 */ CROSSREFS Sequence in context: A279563 A150247 A150248 * A150249 A150250 A150251 Adjacent sequences: A105868 A105869 A105870 * A105872 A105873 A105874 KEYWORD easy,nonn AUTHOR Paul Barry, Apr 23 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 16:46 EDT 2024. Contains 373432 sequences. (Running on oeis4.)