The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105871 a(n) = sum{k=0..floor(n/2), C(2*n-3*k, n)*C(n-k, k)} 1
1, 2, 6, 22, 85, 336, 1350, 5492, 22554, 93300, 388201, 1622868, 6811056, 28680356, 121111440, 512684484, 2174928031, 9243973062, 39354962345, 167799259130, 716414975613, 3062437147352, 13105366936465, 56139506687280 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = sum{k=0..floor(n/2), C(2*n-3*k, n)*C(n-k, k)}
Conjecture: 5*n*(n-1)*(3*n-10)*a(n) -3*(n-1)*(21*n^2-63*n-20)*a(n-1) +3*(-3*n^3+107*n^2-446*n+444)*a(n-2) +(3*n^3-259*n^2+1279*n-1575)*a(n-3) +3*(-21*n^3+210*n^2-673*n+694)*a(n-4) -3*(n-3)*(3*n^2-8*n-7)*a(n-5) -2*(n-4)*(3*n-7)*(2*n-9)*a(n-6)=0. - R. J. Mathar, Feb 20 2015
MAPLE
A105871 := proc(n)
add(binomial(2*n-3*k, n)*binomial(n-k, k), k=0..floor(n/2)) ;
end proc: # R. J. Mathar, Feb 20 2015
MATHEMATICA
Table[Sum[Binomial[2n-3k, n]Binomial[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* Harvey P. Dale, Jan 23 2023 *)
PROG
(PARI) a(n)=sum(k=0, floor(n/2), binomial(2*n-3*k, n)*binomial(n-k, k) ); /* Joerg Arndt, Mar 06 2013 */
CROSSREFS
Sequence in context: A279563 A150247 A150248 * A150249 A150250 A150251
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 23 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 16:46 EDT 2024. Contains 373432 sequences. (Running on oeis4.)