login
A176292
Numbers k such that the prime factorizations of composite(k) and composite(k+1) have the same number of primes (including multiplicities).
1
1, 4, 7, 10, 12, 15, 17, 18, 21, 22, 25, 28, 29, 40, 47, 53, 61, 62, 64, 68, 69, 72, 85, 87, 90, 91, 93, 100, 102, 106, 107, 110, 112, 114, 116, 120, 125, 130, 131, 132, 133, 136, 151, 154, 155, 158, 165, 166, 169, 170, 179, 181, 190, 191, 198, 212, 221, 222, 223
OFFSET
1,2
LINKS
FORMULA
A001222(A002808(a(n))) = A001222(A002808(a(n)+1)).
MAPLE
A001222 := proc(n) numtheory[bigomega](n) ; end proc:
A002808 := proc(n) if n = 1 then return 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do; end if; end proc:
for n from 1 to 400 do if A001222(A002808(n)) = A001222(A002808(n+1)) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Apr 20 2010
MATHEMATICA
SequencePosition[PrimeOmega/@Select[Range[300], CompositeQ], {x_, x_}][[;; , 1]] (* Harvey P. Dale, Jun 21 2023 *)
CROSSREFS
Sequence in context: A214641 A178598 A310675 * A050173 A078633 A190008
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected (86 replaced with 87, 89 removed, many terms after 92 replaced) by R. J. Mathar, Apr 20 2010
STATUS
approved