|
|
A045939
|
|
Numbers m such that the factorizations of m..m+2 have the same number of primes (including multiplicities).
|
|
20
|
|
|
33, 85, 93, 121, 141, 170, 201, 213, 217, 244, 284, 301, 393, 428, 434, 445, 506, 602, 603, 604, 633, 637, 697, 841, 921, 962, 1041, 1074, 1083, 1084, 1130, 1137, 1244, 1261, 1274, 1309, 1345, 1401, 1412, 1430, 1434, 1448, 1490, 1532, 1556, 1586, 1604
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
MATHEMATICA
|
f[n_]:=Plus@@Last/@FactorInteger[n]; lst={}; lst={}; Do[If[f[n]==f[n+1]==f[n+2], AppendTo[lst, n]], {n, 0, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
pd2Q[n_]:=PrimeOmega[n]==PrimeOmega[n+1]==PrimeOmega[n+2]; Select[Range[1700], pd2Q] (* Harvey P. Dale, Apr 19 2011 *)
SequencePosition[PrimeOmega[Range[1700]], {x_, x_, x_}][[;; , 1]] (* Harvey P. Dale, Mar 08 2023 *)
|
|
PROG
|
(PARI) list(lim)=my(v=List(), a=1, b=1, c); forfactored(n=4, lim\1+2, c=bigomega(n); if(a==b&&a==c, listput(v, n[1]-2)); a=b; b=c); Vec(v) \\ Charles R Greathouse IV, May 07 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|