login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045939
Numbers m such that the factorizations of m..m+2 have the same number of primes (including multiplicities).
22
33, 85, 93, 121, 141, 170, 201, 213, 217, 244, 284, 301, 393, 428, 434, 445, 506, 602, 603, 604, 633, 637, 697, 841, 921, 962, 1041, 1074, 1083, 1084, 1130, 1137, 1244, 1261, 1274, 1309, 1345, 1401, 1412, 1430, 1434, 1448, 1490, 1532, 1556, 1586, 1604
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
f[n_]:=Plus@@Last/@FactorInteger[n]; lst={}; lst={}; Do[If[f[n]==f[n+1]==f[n+2], AppendTo[lst, n]], {n, 0, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
pd2Q[n_]:=PrimeOmega[n]==PrimeOmega[n+1]==PrimeOmega[n+2]; Select[Range[1700], pd2Q] (* Harvey P. Dale, Apr 19 2011 *)
SequencePosition[PrimeOmega[Range[1700]], {x_, x_, x_}][[;; , 1]] (* Harvey P. Dale, Mar 08 2023 *)
PROG
(PARI) is(n)=my(t=bigomega(n)); bigomega(n+1)==t && bigomega(n+2)==t \\ Charles R Greathouse IV, Sep 14 2015
(PARI) list(lim)=my(v=List(), a=1, b=1, c); forfactored(n=4, lim\1+2, c=bigomega(n); if(a==b&&a==c, listput(v, n[1]-2)); a=b; b=c); Vec(v) \\ Charles R Greathouse IV, May 07 2020
CROSSREFS
Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), this sequence (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
A056809 is a subsequence.
Cf. A006073. - Harvey P. Dale, Apr 19 2011
Sequence in context: A094846 A044171 A044552 * A056809 A073251 A005238
KEYWORD
nonn,easy
STATUS
approved