login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123201
Numbers m such that the factorizations of m..m+7 have the same number of primes (including multiplicities).
12
3405122, 3405123, 6612470, 8360103, 8520321, 9306710, 10762407, 12788342, 12788343, 15212151, 15531110, 16890901, 17521382, 17521383, 21991382, 21991383, 22715270, 22715271, 22841702, 22841703, 22914722, 22914723
OFFSET
1,1
COMMENTS
Note that because 3405130 = 2*5*167*2039 is also the product of 4 primes, 3405122 is the first m such that numbers m..m+8 are products of the same number k of primes (k=4).
LINKS
EXAMPLE
3405122 = 2*7*29*8387, 3405123 = 3^2*19*19913, 3405124 = 2^2*127*6703, 3405125 = 5^3*27241, 3405126 = 2*3*59*9619, 3405127 = 11*23*43*313, 3405128 = 2^3*425641, 3405129 = 3*7*13*12473 all products of 4 primes.
PROG
(PARI) c=0; p1=0; for(n=2, 10^8, p2=bigomega(n); if(p1==p2, c++; if(c>=7, print1(n-7 ", ")), c=0; p1=p2)) \\ Donovan Johnson, Mar 20 2013
CROSSREFS
Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), this sequence (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
Sequence in context: A206382 A114682 A157106 * A358017 A258517 A258510
KEYWORD
nonn
AUTHOR
Zak Seidov, Nov 05 2006
EXTENSIONS
a(7)-a(22) from Donovan Johnson, Apr 09 2010
STATUS
approved