login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A157106
5651522n^2 - 2541672n + 285769.
3
3395619, 17808513, 43524451, 80543433, 128865459, 188490529, 259418643, 341649801, 435184003, 540021249, 656161539, 783604873, 922351251, 1072400673, 1233753139, 1406408649, 1590367203, 1785628801, 1992193443, 2210061129
OFFSET
1,1
COMMENTS
The identity (5651522*n^2-2541672*n+285769)^2-(1681*n^2-756*n+85)*(137842*n-30996)^2=1 can be written as a(n)^2-A157010(n)*A157105(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
MAPLE
A157106:=n->5651522*n^2 - 2541672*n + 285769; seq(A157106(n), n=1..30); # Wesley Ivan Hurt, Jan 23 2014
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {3395619, 17808513, 43524451}, 30]
PROG
(Magma) I:=[3395619, 17808513, 43524451]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 5651522*n^2 - 2541672*n + 285769.
CROSSREFS
Sequence in context: A206168 A206382 A114682 * A123201 A358017 A258517
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 23 2009
STATUS
approved