login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157106
5651522n^2 - 2541672n + 285769.
3
3395619, 17808513, 43524451, 80543433, 128865459, 188490529, 259418643, 341649801, 435184003, 540021249, 656161539, 783604873, 922351251, 1072400673, 1233753139, 1406408649, 1590367203, 1785628801, 1992193443, 2210061129
OFFSET
1,1
COMMENTS
The identity (5651522*n^2-2541672*n+285769)^2-(1681*n^2-756*n+85)*(137842*n-30996)^2=1 can be written as a(n)^2-A157010(n)*A157105(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
MAPLE
A157106:=n->5651522*n^2 - 2541672*n + 285769; seq(A157106(n), n=1..30); # Wesley Ivan Hurt, Jan 23 2014
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {3395619, 17808513, 43524451}, 30]
PROG
(Magma) I:=[3395619, 17808513, 43524451]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 5651522*n^2 - 2541672*n + 285769.
CROSSREFS
Sequence in context: A206168 A206382 A114682 * A123201 A358017 A258517
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 23 2009
STATUS
approved