The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157010 a(n) = 1681*n^2 - 756*n + 85. 3
 1010, 5297, 12946, 23957, 38330, 56065, 77162, 101621, 129442, 160625, 195170, 233077, 274346, 318977, 366970, 418325, 473042, 531121, 592562, 657365, 725530, 797057, 871946, 950197, 1031810, 1116785, 1205122, 1296821, 1391882, 1490305 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (5651522*n^2 -2541672*n +285769)^2 - (1681*n^2 -756*n +85) * (137842*n -30996)^2 = 1 can be written as (A157106(n))^2 - (a(n))*(A157105(n))^2 = 1. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Vincenzo Librandi, X^2-AY^2=1 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). G.f: x*(1010 + 2267*x + 85*x^2)/(1-x)^3. E.g.f.: -85 + (85 + 925*x + 1681*x^2)*exp(x). - G. C. Greubel, Feb 23 2019 MAPLE A157010:=n->1681*n^2 - 756*n + 85; seq(A157010(n), n=1..30); # Wesley Ivan Hurt, Jan 24 2014 MATHEMATICA LinearRecurrence[{3, -3, 1}, {1010, 5297, 12946}, 30] PROG (MAGMA) I:=[1010, 5297, 12946]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; (PARI) a(n) = 1681*n^2 - 756*n + 85. (Sage) [1681*n^2 - 756*n + 85 for n in (1..40)] # G. C. Greubel, Feb 23 2019 (GAP) List([1..40], n-> 1681*n^2 - 756*n + 85) # G. C. Greubel, Feb 23 2019 CROSSREFS Cf. A157105, A157106. Sequence in context: A286138 A145808 A252683 * A076940 A173521 A266442 Adjacent sequences:  A157007 A157008 A157009 * A157011 A157012 A157013 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Feb 23 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 17:11 EDT 2021. Contains 343920 sequences. (Running on oeis4.)