login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157012
Riordan's general Eulerian recursion: T(n,k) = (k+2)*T(n-1, k) + (n-k) * T(n-1, k-1), with T(n,0) = 1, T(n,n) = 0.
4
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 18, 14, 1, 0, 1, 58, 110, 33, 1, 0, 1, 179, 672, 495, 72, 1, 0, 1, 543, 3583, 5163, 1917, 151, 1, 0, 1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0, 1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0
OFFSET
0,8
COMMENTS
Row sums are:
{1, 1, 2, 7, 34, 203, 1420, 11359, 102230, 1022299,...}.
This recursion set doesn't seem to produce the Eulerian 2nd A008517.
The Mathematica code gives ten sequences of which the first few are in the OEIS (see Crossrefs section). - G. C. Greubel, Feb 22 2019
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215
FORMULA
e(n,k,m) = (k+m)*e(n-1, k, m) + (n-k+1-m)*e(n-1, k-1, m) for m=2.
T(n,k) = (k+2)*T(n-1, k) + (n-k)*T(n-1, k-1), with T(n,0) = 1, T(n,n) = 0. - G. C. Greubel, Feb 22 2019
EXAMPLE
Triangle begins with:
1.
1, 0.
1, 1, 0.
1, 5, 1, 0.
1, 18, 14, 1, 0.
1, 58, 110, 33, 1, 0.
1, 179, 672, 495, 72, 1, 0.
1, 543, 3583, 5163, 1917, 151, 1, 0.
1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0.
1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0.
MATHEMATICA
e[n_, 0, m_]:= 1;
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] +(n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k, 0, n-1}], {n, 1, 10}]], {m, 0, 10}]
T[n_, 0]:= 1; T[n_, n_]:= 0; T[n_, k_]:= T[n, k] = (k+2)*T[n-1, k] +(n-k) *T[n-1, k-1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
PROG
(PARI) {T(n, k) = if(k==0, 1, if(k==n, 0, (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1)))};
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
(Sage)
def T(n, k):
if (k==0): return 1
elif (k==n): return 0
else: return (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 22 2019
CROSSREFS
Cf. A008517.
Cf. A157011 (m=0), A008292 (m=1), This Sequence (m=2), A157013 (m=3).
Sequence in context: A085475 A211399 A265192 * A102365 A269945 A322013
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 21 2009
STATUS
approved