login
A157103
Array A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1, read by antidiagonals.
37
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 5, 12, 10, 4, 1, 1, 8, 29, 33, 17, 5, 1, 1, 13, 70, 109, 72, 26, 6, 1, 1, 21, 169, 360, 305, 135, 37, 7, 1, 1, 34, 408, 1189, 1292, 701, 228, 50, 8, 1, 1, 55, 985, 3927, 5473, 3640, 1405, 357, 65, 9, 1
OFFSET
0,8
COMMENTS
From Michael A. Allen, Mar 30 2023: (Start)
Column k is the k-metallonacci sequence for k > 0.
T(n,k) is, for n > 0 and k > 0, the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are k kinds of squares available. (End)
LINKS
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015. See Table 3.
FORMULA
A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1 (array).
A(n, 1) = A000045(n+1).
T(n, k) = k*T(n-1, k) + T(n-2, k) with T(n, 0) = T(n, n) = 1 (triangle).
From G. C. Greubel, Jan 11 2022: (Start)
T(n, k) = Fibonacci(n-k+1, k), with T(n, 0) = T(n, n) = 1.
T(2*n, n) = A084845(n) for n >= 1, with T(0, 0) = 1.
T(2*n+1, n+1) = A084844(n). (End)
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, ... (A000012);
1, 1, 2, 3, 4, 5, 6, 7, ... (A000027);
1, 2, 5, 10, 17, 26, 37, 50, ... (A002522);
1, 3, 12, 33, 72, 135, 228, 357, ...;
1, 5, 29, 109, 305, 701, 1405, 2549, ...;
1, 8, 70, 360, 1292, 3640, 8658, 18200, ...;
1, 13, 169, 1189, 5473, 18901, 53353, 129949, ...;
1, 21, 408, 3927, 23184, 98145, 328776, 927843, ...;
...
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 5, 3, 1;
1, 5, 12, 10, 4, 1;
1, 8, 29, 33, 17, 5, 1;
1, 13, 70, 109, 72, 26, 6, 1;
1, 21, 169, 360, 305, 135, 37, 7, 1;
1, 34, 408, 1189, 1292, 701, 228, 50, 8, 1;
1, 55, 985, 3927, 5473, 3640, 1405, 357, 65, 9, 1;
1, 89, 2378, 12970, 23184, 18901, 8658, 2549, 528, 82, 10, 1;
1, 144, 5741, 42837, 98209, 98145, 53353, 18200, 4289, 747, 101, 11, 1;
...
Example: Column 3 = (1, 3, 10, 33, 109, 360, ...) = A006190.
MAPLE
A157103 := proc(n, k)
if k = 0 then
1;
else
mul(k-2*I*cos(l*Pi/(n+1)), l=1..n) ;
combine(%, trig) ;
round(%) ;
end if;
end proc:
seq( seq(A157103(d-k, k), k=0..d), d=0..12) ; # R. J. Mathar, Feb 27 2023
MATHEMATICA
(* First program *)
T[_, 0]=1; T[n_, n_]=1; T[_, _]=0;
T[n_, k_] /; 0 <= k <= n := k T[n-1, k] + T[n-2, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Aug 07 2018 *)
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, Fibonacci[n-k+1, k]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 11 2022 *)
PROG
(Magma)
A157103:= func< n, k | k eq 0 or k eq n select 1 else Evaluate(DicksonSecond(n, -1), k) >;
[A157103(n-k, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 11 2022
(Sage)
def A157103(n, k): return 1 if (k==0 or k==n) else lucas_number1(n+1, k, -1)
flatten([[A157103(n-k, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 11 2022
CROSSREFS
Essentially the transpose of A073133, A172236, A352361.
Sequence in context: A132044 A034327 A034254 * A135966 A292741 A356802
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Feb 22 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 11 2022
STATUS
approved