OFFSET
0,2
COMMENTS
Hankel transform is A157101.
The ratio of this generating function by the generating function of A025262 is x*(1-x), which means this sequence is the partial sums of A025262. - Sean A. Irvine, R. J. Mathar, Jun 27 2022
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: (1+x)*c(x*(1-x^2)), c(x) the g.f. of A000108;
a(n) = Sum_{k=0..n} (-1)^binomial(n-k,2)*binomial(k,floor((n-k)/2))*A000108(k).
Conjecture: (n+1)*a(n) +(-5*n+1)*a(n-1) +2*(2*n-1)*a(n-2) +2*(2*n-7)*a(n-3) +2*(-2*n+7)*a(n-4) = 0. - R. J. Mathar, Feb 05 2015
MATHEMATICA
a[n_]:= Sum[(-1)^Binomial[k, 2]*Binomial[n-k, Floor[k/2]]*CatalanNumber[n-k], {k, 0, n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jan 11 2022 *)
PROG
(Sage)
def A157100(n): return sum((-1)^binomial(k, 2)*binomial(n-k, k//2)*catalan_number(n-k) for k in (0..n))
[A157100(n) for n in (0..40)] # G. C. Greubel, Jan 11 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 22 2009
STATUS
approved