login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157100
Transform of Catalan numbers whose Hankel transform satisfies the Somos-4 recurrence.
2
1, 2, 3, 6, 14, 37, 105, 312, 956, 2996, 9554, 30897, 101083, 333947, 1112497, 3732956, 12605030, 42800318, 146046820, 500555448, 1722402304, 5948047170, 20607691518, 71610355541, 249520257107, 871614139397, 3051737703527
OFFSET
0,2
COMMENTS
Hankel transform is A157101.
The ratio of this generating function by the generating function of A025262 is x*(1-x), which means this sequence is the partial sums of A025262. - Sean A. Irvine, R. J. Mathar, Jun 27 2022
LINKS
FORMULA
G.f.: (1+x)*c(x*(1-x^2)), c(x) the g.f. of A000108;
a(n) = Sum_{k=0..n} (-1)^binomial(n-k,2)*binomial(k,floor((n-k)/2))*A000108(k).
Conjecture: (n+1)*a(n) +(-5*n+1)*a(n-1) +2*(2*n-1)*a(n-2) +2*(2*n-7)*a(n-3) +2*(-2*n+7)*a(n-4) = 0. - R. J. Mathar, Feb 05 2015
MATHEMATICA
a[n_]:= Sum[(-1)^Binomial[k, 2]*Binomial[n-k, Floor[k/2]]*CatalanNumber[n-k], {k, 0, n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jan 11 2022 *)
PROG
(Sage)
def A157100(n): return sum((-1)^binomial(k, 2)*binomial(n-k, k//2)*catalan_number(n-k) for k in (0..n))
[A157100(n) for n in (0..40)] # G. C. Greubel, Jan 11 2022
CROSSREFS
Partial sums of A025262.
Sequence in context: A001420 A337186 A049339 * A081293 A193215 A007611
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 22 2009
STATUS
approved