|
|
A007611
|
|
a(n) = n! + 2^n.
(Formerly M0807)
|
|
7
|
|
|
2, 3, 6, 14, 40, 152, 784, 5168, 40576, 363392, 3629824, 39918848, 479005696, 6227028992, 87178307584, 1307674400768, 20922789953536, 355687428227072, 6402373705990144, 121645100409356288, 2432902008177688576
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
REFERENCES
|
Page 605, Exercise 135 in Calculus of a Single Variable for Advanced High School Students, 8th Edition, by Ron Larson, Robert P. Hostetler and Bruce H. Edwards, 2006.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
51st Annual Putnam Competition, Problem A-1, Math. Mag., 64 (1991), 141-144.
Index entries for sequences related to factorial numbers
|
|
FORMULA
|
a(n) = (n+4) a(n-1) - 4n a(n-2) + (4n-8) a(n-3) with a(0) = 2, a(1) = 3, a(2) = 6. - Dennis S. Kluk (mathemagician(AT)ameritech.net), Feb 12 2006
From Robert Israel, Mar 06 2016: (Start)
a(n) = A000079(n)+A000142(n).
E.g.f.: 1/(1-x) + exp(2x). (End)
|
|
MAPLE
|
seq(2^n+n!, n=0..50); # Robert Israel, Mar 06 2016
|
|
MATHEMATICA
|
Table[n! + 2^n, {n, 0, 19}] (* Alonso del Arte, Mar 06 2016 *)
|
|
PROG
|
(Sage) [factorial(n)+2^n for n in range(0, 21)] # Zerinvary Lajos, Oct 27 2009
(MAGMA) [Factorial(n)+ 2^n: n in [0..30]]; // Vincenzo Librandi, Jun 10 2013
|
|
CROSSREFS
|
Cf. A000079, A000142.
Sequence in context: A157100 A081293 A193215 * A098641 A188775 A015892
Adjacent sequences: A007608 A007609 A007610 * A007612 A007613 A007614
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Robert G. Wilson v
|
|
STATUS
|
approved
|
|
|
|