login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193215
Number of Dyck paths of semilength n having the property that the heights of the first and the last peaks coincide.
2
1, 2, 3, 6, 14, 38, 113, 356, 1164, 3906, 13364, 46426, 163294, 580316, 2080475, 7515038, 27324014, 99920756, 367264130, 1356043388, 5027345564, 18706888196, 69841532210, 261545298848, 982175296016, 3697785571820, 13954630170720, 52776659865348, 200006396351216, 759386612309146, 2888310863702017
OFFSET
1,2
COMMENTS
a(n+1) - a(n) = A000958(n) (this reduces to David Callan's comment on A000958(n) from Aug 23 2011).
The sequence gives the trace of the matrix describing the statistics of Dyck paths of semilength n with respect to the heights of the first and the last peaks, see the paper of Baur and Mazorchuk.
LINKS
K. Baur and V. Mazorchuk, Combinatorial analogues of ad-nilpotent ideals for untwisted affine Lie algebras, arXiv:1108.3659 [math.RA], 2011.
FORMULA
a(n) = 1 + Sum_{i=1..n-1} A000958(i).
Recurrence: 2*n*(5*n-11)*a(n) = 3*(15*n^2 - 53*n + 40)*a(n-1) - 3*(5*n^2 - 21*n + 20)*a(n-2) - 2*(2*n-5)*(5*n-6)*a(n-3). - Vaclav Kotesovec, Mar 21 2014
a(n) ~ 5*4^n/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
MAPLE
for n from 1 by 1 to 100 do 1+sum(binomial(2*n-2-2*k, n-1-k)-binomial(2*n-2-2*k, n-1-2*k), k = 1 .. n-1) end do
MATHEMATICA
Table[1+Sum[Binomial[2*n-2-2*k, n-1-k]-Binomial[2*n-2-2*k, n-1-2*k], {k, 1, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 21 2014 *)
PROG
(PARI) a(n)=1+sum(k=1, n-1, binomial(2*n-2-2*k, n-1-k)-binomial(2*n-2-2*k, n-1-2*k));
CROSSREFS
Sequence in context: A049339 A157100 A081293 * A007611 A098641 A188775
KEYWORD
nonn,easy
AUTHOR
Volodymyr Mazorchuk, Aug 26 2011
STATUS
approved