login
A157101
A Somos-4 variant.
4
1, -1, -5, -4, 29, 129, -65, -3689, -16264, 113689, 2382785, 7001471, -398035821, -7911171596, 43244638645, 6480598259201, 124106986093951, -5987117709349201, -541051130050800400, -4830209396684261199
OFFSET
0,3
COMMENTS
Hankel transform of A157100.
FORMULA
a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), with a(0)=1, a(1)=-1, a(2)=-5, a(3)=-4.
a(n) = A051138(n+1) for all n in Z. - Michael Somos, Jul 17 2016
MATHEMATICA
RecurrenceTable[{a[n]==(a[n-1]*a[n-3]+a[n-2]^2)/a[n-4], a[0]==1, a[1]==-1, a[2]==-5, a[3]==-4}, a, {n, 20}] (* G. C. Greubel, Feb 23 2019 *)
PROG
(PARI) m=20; v=concat([1, -1, -5, -4], vector(m-4)); for(n=5, m, v[n] = (v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Feb 23 2019
(Magma) I:=[1, -1, -5, -4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..20]]; // G. C. Greubel, Feb 23 2019
(Sage)
def a(n):
if (n==0): return 1
elif (n==1): return -1
elif (n==2): return -5
elif (n==3): return -4
else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
[a(n) for n in (0..20)] # G. C. Greubel, Feb 23 2019
(GAP) a:=[1, -1, -5, -4];; for n in [5..20] do a[n]:=(a[n-1]*a[n-3] + a[n-2]^2)/a[n-4]; od; a; # G. C. Greubel, Feb 23 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Feb 22 2009
STATUS
approved