login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132044 Triangle T(n,k) = binomial(n, k) - 1 with T(n,0) = T(n,n) = 1, read by rows. 13
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 4, 9, 9, 4, 1, 1, 5, 14, 19, 14, 5, 1, 1, 6, 20, 34, 34, 20, 6, 1, 1, 7, 27, 55, 69, 55, 27, 7, 1, 1, 8, 35, 83, 125, 125, 83, 35, 8, 1, 1, 9, 44, 119, 209, 251, 209, 119, 44, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Row sums = A132045: (1, 2, 3, 6, 13, 28, 59,...).

The triangle sequences having the form T(n,k,q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 have the row sums Sum_{k=0..n} T(n,k,q) = 2^(n-2)*q^n + 2^n - (n-1) - (5/4)*[n=0] -(q/2)*[n=1]. - G. C. Greubel, Feb 12 2021

LINKS

G. C. Greubel, Rows n = 0..100 of the triangle, flattened

FORMULA

T(n, k) = A007318(n,k) + A103451(n,k) - A000012(n,k), an infinite lower triangular matrix.

T(n, k) = binomial(n, k) - 1, with T(n,0) = T(n,n) = 1. - Roger L. Bagula, Feb 08 2010

From G. C. Greubel, Feb 12 2021: (Start)

T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 0.

Sum_{k=0..n} T(n, k, 0) = 2^n - (n-1) - [n=0]. (End)

EXAMPLE

First few rows of the triangle are:

  1;

  1, 1;

  1, 1,  1;

  1, 2,  2,  1;

  1, 3,  5,  3,  1;

  1, 4,  9,  9,  4,  1;

  1, 5, 14, 19, 14,  5,  1;

  1, 6, 20, 34, 34, 20,  6, 1;

  1, 7, 27, 55, 69, 55, 27, 7, 1;

MATHEMATICA

T[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1];

Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 08 2010 *)

PROG

(Sage)

def T(n, k, q): return 1 if (k==0 or k==n) else binomial(n, k) + q^n*binomial(n-2, k-1) -1

flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021

(Magma)

T:= func< n, k, q | k eq 0 or k eq n select 1 else Binomial(n, k) + q^n*Binomial(n-2, k-1) -1 >;

[T(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021

CROSSREFS

Cf. A007318, A103451, A132045.

Cf. this sequence (q=0), A173075 (q=1), A173046 (q=2), A173047 (q=3).

Sequence in context: A161671 A144444 A054106 * A034327 A034254 A157103

Adjacent sequences:  A132041 A132042 A132043 * A132045 A132046 A132047

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson, Aug 08 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 16:02 EDT 2021. Contains 343825 sequences. (Running on oeis4.)