OFFSET
0,8
COMMENTS
Row sums = A132045: (1, 2, 3, 6, 13, 28, 59, ...).
The triangle sequences having the form T(n,k,q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 have the row sums Sum_{k=0..n} T(n,k,q) = 2^(n-2)*q^n + 2^n - (n-1) - (5/4)*[n=0] -(q/2)*[n=1]. - G. C. Greubel, Feb 12 2021
LINKS
G. C. Greubel, Rows n = 0..100 of the triangle, flattened
FORMULA
T(n, k) = binomial(n, k) - 1, with T(n,0) = T(n,n) = 1. - Roger L. Bagula, Feb 08 2010
From G. C. Greubel, Feb 12 2021: (Start)
T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 0.
Sum_{k=0..n} T(n, k, 0) = 2^n - (n-1) - [n=0]. (End)
EXAMPLE
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 5, 3, 1;
1, 4, 9, 9, 4, 1;
1, 5, 14, 19, 14, 5, 1;
1, 6, 20, 34, 34, 20, 6, 1;
1, 7, 27, 55, 69, 55, 27, 7, 1;
MATHEMATICA
T[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 08 2010 *)
PROG
(Sage)
def T(n, k, q): return 1 if (k==0 or k==n) else binomial(n, k) + q^n*binomial(n-2, k-1) -1
flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
(Magma)
T:= func< n, k, q | k eq 0 or k eq n select 1 else Binomial(n, k) + q^n*Binomial(n-2, k-1) -1 >;
[T(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 08 2007
STATUS
approved