login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173046
Triangle T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 2, read by rows.
4
1, 1, 1, 1, 5, 1, 1, 10, 10, 1, 1, 19, 37, 19, 1, 1, 36, 105, 105, 36, 1, 1, 69, 270, 403, 270, 69, 1, 1, 134, 660, 1314, 1314, 660, 134, 1, 1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1, 1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1, 1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1
OFFSET
0,5
COMMENTS
The triangle sequences having the form T(n,k,q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 have the row sums Sum_{k=0..n} T(n,k,q) = 2^(n-2)*q^n + 2^n - (n-1) - (5/4)*[n=0] -(q/2)*[n=1]. - G. C. Greubel, Feb 16 2021
FORMULA
T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 2.
Sum_{k=0..n} T(n, k, 2) = 4^(n-1) + 2^n - (n-1) - (5/4)*[n=0] = A000302(n-1) + A132045(n) - (5/4)*[n=0]. - [n=1]. - G. C. Greubel, Feb 16 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 10, 10, 1;
1, 19, 37, 19, 1;
1, 36, 105, 105, 36, 1;
1, 69, 270, 403, 270, 69, 1;
1, 134, 660, 1314, 1314, 660, 134, 1;
1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1;
1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1;
1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1;
MATHEMATICA
T[n_, m_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] +(q^n)*Binomial[n-2, k-1] -1];
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 16 2021 *)
PROG
(Sage)
def T(n, k, q): return 1 if (k==0 or k==n) else binomial(n, k) + q^n*binomial(n-2, k-1) -1
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 16 2021
(Magma)
T:= func< n, k, q | k eq 0 or k eq n select 1 else Binomial(n, k) + q^n*Binomial(n-2, k-1) -1 >;
[T(n, k, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
CROSSREFS
Cf. A132044 (q=0), A173075 (q=1), this sequence (q=2), A173047 (q=3).
Sequence in context: A356113 A188461 A188474 * A173043 A082046 A132787
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 08 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 16 2021
STATUS
approved