login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356113
Triangle read by rows. T(n, k) = A355776(n, k) + A355777(n, k). Refining A174159, the Euler minus Narayana/Catalan triangle.
0
1, 1, 1, 1, 1, 5, 1, 1, 10, 6, 16, 1, 1, 17, 25, 54, 58, 42, 1, 1, 26, 46, 27, 137, 354, 63, 224, 330, 99, 1, 1, 37, 77, 105, 291, 906, 513, 567, 817, 2883, 957, 811, 1466, 219, 1, 1, 50, 120, 188, 108, 548, 2020, 2632, 1508, 1682, 2356, 10116, 5574, 11724, 978, 4184, 18128, 8436, 2722, 5668, 466, 1
OFFSET
0,6
LINKS
Peter Luschny, Permutations with Lehmer, a SageMath Jupyter Notebook.
EXAMPLE
Triangle T(n, k) begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 1, 5, 1;
[4] 1, [10, 6], 16, 1;
[5] 1, [17, 25], [54, 58], 42, 1;
[6] 1, [26, 46, 27], [137, 354, 63], [224, 330], 99, 1;
[7] 1, [37, 77, 105], [291, 906, 513, 567], [817, 2883, 957],[811, 1466], 219, 1;
PROG
(SageMath)
for n in range(8):
print([n], [A355776(n, k) + A355777(n, k)
for k in range(number_of_partitions(n))])
CROSSREFS
Cf. A355776, A355777, A356118 (row sums), A174159 (reduced triangle).
Sequence in context: A210651 A255831 A363970 * A188461 A188474 A173046
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jul 28 2022
STATUS
approved