Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #12 Aug 23 2022 05:21:37
%S 1,1,1,1,1,5,1,1,10,6,16,1,1,17,25,54,58,42,1,1,26,46,27,137,354,63,
%T 224,330,99,1,1,37,77,105,291,906,513,567,817,2883,957,811,1466,219,1,
%U 1,50,120,188,108,548,2020,2632,1508,1682,2356,10116,5574,11724,978,4184,18128,8436,2722,5668,466,1
%N Triangle read by rows. T(n, k) = A355776(n, k) + A355777(n, k). Refining A174159, the Euler minus Narayana/Catalan triangle.
%H Peter Luschny, <a href="https://github.com/PeterLuschny/PermutationsWithLehmer/blob/main/PermutationsWithLehmer.ipynb">Permutations with Lehmer</a>, a SageMath Jupyter Notebook.
%e Triangle T(n, k) begins:
%e [0] 1;
%e [1] 1;
%e [2] 1, 1;
%e [3] 1, 5, 1;
%e [4] 1, [10, 6], 16, 1;
%e [5] 1, [17, 25], [54, 58], 42, 1;
%e [6] 1, [26, 46, 27], [137, 354, 63], [224, 330], 99, 1;
%e [7] 1, [37, 77, 105], [291, 906, 513, 567], [817, 2883, 957],[811, 1466], 219, 1;
%o (SageMath)
%o for n in range(8):
%o print([n], [A355776(n, k) + A355777(n, k)
%o for k in range(number_of_partitions(n))])
%Y Cf. A355776, A355777, A356118 (row sums), A174159 (reduced triangle).
%K nonn,tabf
%O 0,6
%A _Peter Luschny_, Jul 28 2022