login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A356115
Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations with weakly decreasing Lehmer code (A356266). T(n, k) for n >= 1 and 0 <= k < n.
2
1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 4, 6, 3, 1, 0, 9, 20, 6, 6, 1, 0, 11, 45, 50, 15, 10, 1, 0, 19, 93, 185, 80, 36, 15, 1, 0, 22, 196, 462, 490, 161, 77, 21, 1, 0, 33, 312, 1120, 1834, 1050, 336, 148, 28, 1
OFFSET
1,8
LINKS
Peter Luschny, Permutations with Lehmer, a SageMath Jupyter Notebook.
EXAMPLE
[ 1] [1]
[ 2] [0, 1]
[ 3] [0, 1, 1]
[ 4] [0, 3, 1, 1]
[ 5] [0, 4, 6, 3, 1]
[ 6] [0, 9, 20, 6, 6, 1]
[ 7] [0, 11, 45, 50, 15, 10, 1]
[ 8] [0, 19, 93, 185, 80, 36, 15, 1]
[ 9] [0, 22, 196, 462, 490, 161, 77, 21, 1]
[10] [0, 33, 312, 1120, 1834, 1050, 336, 148, 28, 1]
PROG
(SageMath) # uses function reduce_partition_triangle from A356265.
def A356115_row(n: int) -> list[int]:
return reduce_partition_triangle(A356266_row, n + 1)[n - 1]
def A356115(n: int, k: int) -> int:
return A356115_row(n)[k]
for n in range(1, 11):
print([n], A356115_row(n))
CROSSREFS
Cf. A356266 (partition version), A356265, A120588 (row sums).
Sequence in context: A076277 A130115 A191582 * A363756 A130160 A288108
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 16 2022
STATUS
approved